forked from gongzhitaao/tensorflow-adversarial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_00.py
149 lines (115 loc) · 4.02 KB
/
ex_00.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
# supress tensorflow logging other than errors
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.datasets import mnist
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from attacks.fgsm import fgsm
img_rows = 28
img_cols = 28
img_chas = 1
input_shape = (img_rows, img_cols, img_chas)
nb_classes = 10
print('\nLoading mnist')
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.astype('float32') / 255.
X_test = X_test.astype('float32') / 255.
X_train = X_train.reshape(-1, img_rows, img_cols, img_chas)
X_test = X_test.reshape(-1, img_rows, img_cols, img_chas)
# one hot encoding
y_train = np_utils.to_categorical(y_train, nb_classes)
z0 = y_test.copy()
y_test = np_utils.to_categorical(y_test, nb_classes)
sess = tf.InteractiveSession()
K.set_session(sess)
if False:
print('\nLoading model')
model = load_model('model/ex_00.h5')
else:
print('\nBuilding model')
model = Sequential([
Convolution2D(32, 3, 3, input_shape=input_shape),
Activation('relu'),
Convolution2D(32, 3, 3),
Activation('relu'),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25),
Flatten(),
Dense(128),
Activation('relu'),
Dropout(0.5),
Dense(10),
Activation('softmax')])
model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
print('\nTraining model')
model.fit(X_train, y_train, nb_epoch=10)
print('\nSaving model')
os.makedirs('model', exist_ok=True)
model.save('model/ex_00.h5')
x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
img_chas))
y = tf.placeholder(tf.float32, shape=(None, nb_classes))
x_adv = fgsm(model, x, nb_epoch=12, eps=0.02)
print('\nTest against clean data')
score = model.evaluate(X_test, y_test)
print('\nloss: {0:.4f} acc: {1:.4f}'.format(score[0], score[1]))
nb_sample = X_test.shape[0]
batch_size = 128
nb_batch = int(np.ceil(nb_sample/batch_size))
X_adv = np.empty(X_test.shape)
for batch in range(nb_batch):
print('batch {0}/{1}'.format(batch+1, nb_batch), end='\r')
start = batch * batch_size
end = min(nb_sample, start+batch_size)
tmp = sess.run(x_adv, feed_dict={x: X_test[start:end],
y: y_test[start:end],
K.learning_phase(): 0})
X_adv[start:end] = tmp
print('\nTest against adversarial data')
score = model.evaluate(X_adv, y_test)
print('\nloss: {0:.4f} acc: {1:.4f}'.format(score[0], score[1]))
if False:
db = np.load('data/ex_00.npy')
X_tmp, y_adv = db['X_tmp'], db['y_adv']
else:
y1 = model.predict(X_test)
z1 = np.argmax(y1, axis=1)
y2 = model.predict(X_adv)
z2 = np.argmax(y2, axis=1)
X_tmp = np.empty((10, 28, 28))
y_adv = np.empty((10, 10))
for i in range(10):
print('Target {0}'.format(i))
ind, = np.where(np.all([z0==i, z1==i, z2!=i], axis=0))
cur = np.random.choice(ind.shape[0])
cur = ind[cur]
X_tmp[i] = np.squeeze(X_adv[cur])
y_adv[i] = y2[cur]
os.makedirs('data', exist_ok=True)
with open('data/ex_00.npy', 'wb') as w:
np.savez(w, X_tmp=X_tmp, y_adv=y_adv)
print('\nPlotting results')
fig = plt.figure(figsize=(10, 1.8))
gs = gridspec.GridSpec(1, 10, wspace=0.1, hspace=0.1)
label = np.argmax(y_adv, axis=1)
p = np.max(y_adv, axis=1)
for i in range(10):
ax = fig.add_subplot(gs[0, i])
ax.imshow(X_tmp[i], cmap='gray', interpolation='none')
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel('{0} ({1:.2f})'.format(label[i], p[i]), fontsize=12)
print('\nSaving figure')
gs.tight_layout(fig)
os.makedirs('img', exist_ok=True)
plt.savefig('img/ex_00.png')