Skip to content

Unofficial pytorch implementation of algorithms for domain adaptation

Notifications You must be signed in to change notification settings

naoto0804/pytorch-domain-adaptation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pytorch-domain-adaptation

This is an unofficial pytorch implementation of algorithms for domain adaptation.

Note that this is an ongoing project and I cannot fully reproduce the results. Suggestions are welcome!

List of algorithms

  • From source to target and back: symmetric bi-directional adaptive GAN [Russo+, CVPR2018].
  • Augmented Cyclic Adversarial Learning for Domain Adaptation [Hosseini-Asl+, arXiv2018].

Requirements

  • Python 3.5+
  • PyTorch 0.4
  • TorchVision
  • TensorboardX
  • batchup
  • click

Usage

These examples are for the MNIST to USPS experiment.

Train Source Only Model

CUDA_VISIBLE_DEVICES=<gpu_id> python train_classifier.py --exp mnist_usps --train_type unsup

Train Target Only Model

CUDA_VISIBLE_DEVICES=<gpu_id> python train_classifier.py --exp mnist_usps --train_type sup

Train Model

UDA_VISIBLE_DEVICES=<gpu_id> python test_classifier.py --exp mnist_usps --snapshot <snapshot_dir>

About

Unofficial pytorch implementation of algorithms for domain adaptation

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages