This is an unofficial pytorch implementation of algorithms for domain adaptation.
Note that this is an ongoing project and I cannot fully reproduce the results. Suggestions are welcome!
- From source to target and back: symmetric bi-directional adaptive GAN [Russo+, CVPR2018].
- Augmented Cyclic Adversarial Learning for Domain Adaptation [Hosseini-Asl+, arXiv2018].
- Python 3.5+
- PyTorch 0.4
- TorchVision
- TensorboardX
- batchup
- click
These examples are for the MNIST to USPS experiment.
CUDA_VISIBLE_DEVICES=<gpu_id> python train_classifier.py --exp mnist_usps --train_type unsup
CUDA_VISIBLE_DEVICES=<gpu_id> python train_classifier.py --exp mnist_usps --train_type sup
UDA_VISIBLE_DEVICES=<gpu_id> python test_classifier.py --exp mnist_usps --snapshot <snapshot_dir>