-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
38 lines (35 loc) · 1.77 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import argparse
import os
from model import RFRNetModel
from dataset import Dataset
from torch.utils.data import DataLoader
def run():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str)
parser.add_argument('--mask_root', type=str)
parser.add_argument('--model_save_path', type=str, default='checkpoint')
parser.add_argument('--result_save_path', type=str, default='results')
parser.add_argument('--target_size', type=int, default=256)
parser.add_argument('--mask_mode', type=int, default=1)
parser.add_argument('--num_iters', type=int, default=450000)
parser.add_argument('--model_path', type=str, default="checkpoint/100000.pth")
parser.add_argument('--batch_size', type=int, default=6)
parser.add_argument('--n_threads', type=int, default=6)
parser.add_argument('--finetune', action='store_true')
parser.add_argument('--test', action='store_true')
parser.add_argument('--gpu_id', type=str, default="0")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
model = RFRNetModel()
if args.test:
model.initialize_model(args.model_path, False)
model.cuda()
dataloader = DataLoader(Dataset(args.data_root, args.mask_root, args.mask_mode, args.target_size, mask_reverse = True, training=False))
model.test(dataloader, args.result_save_path)
else:
model.initialize_model(args.model_path, True)
model.cuda()
dataloader = DataLoader(Dataset(args.data_root, args.mask_root, args.mask_mode, args.target_size, mask_reverse = True), batch_size = args.batch_size, shuffle = True, num_workers = args.n_threads)
model.train(dataloader, args.model_save_path, args.finetune, args.num_iters)
if __name__ == '__main__':
run()