forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scalar_function.rs
148 lines (133 loc) · 4.54 KB
/
scalar_function.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Declaration of built-in (scalar) functions.
//! This module contains built-in functions' enumeration and metadata.
//!
//! Generally, a function has:
//! * a signature
//! * a return type, that is a function of the incoming argument's types
//! * the computation, that must accept each valid signature
//!
//! * Signature: see `Signature`
//! * Return type: a function `(arg_types) -> return_type`. E.g. for sqrt, ([f32]) -> f32, ([f64]) -> f64.
//!
//! This module also has a set of coercion rules to improve user experience: if an argument i32 is passed
//! to a function that supports f64, it is coerced to f64.
use crate::PhysicalExpr;
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;
use datafusion_common::Result;
use datafusion_expr::BuiltinScalarFunction;
use datafusion_expr::ColumnarValue;
pub use datafusion_expr::NullColumnarValue;
use datafusion_expr::ScalarFunctionImplementation;
use std::any::Any;
use std::fmt::Debug;
use std::fmt::{self, Formatter};
use std::sync::Arc;
/// Physical expression of a scalar function
pub struct ScalarFunctionExpr {
fun: ScalarFunctionImplementation,
name: String,
args: Vec<Arc<dyn PhysicalExpr>>,
return_type: DataType,
}
impl Debug for ScalarFunctionExpr {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
f.debug_struct("ScalarFunctionExpr")
.field("fun", &"<FUNC>")
.field("name", &self.name)
.field("args", &self.args)
.field("return_type", &self.return_type)
.finish()
}
}
impl ScalarFunctionExpr {
/// Create a new Scalar function
pub fn new(
name: &str,
fun: ScalarFunctionImplementation,
args: Vec<Arc<dyn PhysicalExpr>>,
return_type: &DataType,
) -> Self {
Self {
fun,
name: name.to_owned(),
args,
return_type: return_type.clone(),
}
}
/// Get the scalar function implementation
pub fn fun(&self) -> &ScalarFunctionImplementation {
&self.fun
}
/// The name for this expression
pub fn name(&self) -> &str {
&self.name
}
/// Input arguments
pub fn args(&self) -> &[Arc<dyn PhysicalExpr>] {
&self.args
}
/// Data type produced by this expression
pub fn return_type(&self) -> &DataType {
&self.return_type
}
}
impl fmt::Display for ScalarFunctionExpr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{}({})",
self.name,
self.args
.iter()
.map(|e| format!("{}", e))
.collect::<Vec<String>>()
.join(", ")
)
}
}
impl PhysicalExpr for ScalarFunctionExpr {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
Ok(self.return_type.clone())
}
fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
Ok(true)
}
fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
// evaluate the arguments, if there are no arguments we'll instead pass in a null array
// indicating the batch size (as a convention)
let inputs = match (self.args.len(), self.name.parse::<BuiltinScalarFunction>()) {
(0, Ok(scalar_fun)) if scalar_fun.supports_zero_argument() => {
vec![NullColumnarValue::from(batch)]
}
_ => self
.args
.iter()
.map(|e| e.evaluate(batch))
.collect::<Result<Vec<_>>>()?,
};
// evaluate the function
let fun = self.fun.as_ref();
(fun)(&inputs)
}
}