forked from thomasyu888/PCBC_DataExplorer_ShinyApp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathui.R
executable file
·196 lines (153 loc) · 8.5 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# library(shinyIncubator)
meth_data_notes <- '<pre>Data Processing Notes:<br>Methylation probes with variation > .01 across all samples were choosen from the normalized data matrix(<a href="https://www.synapse.org/#!Synapse:syn2233188" target="_blank">syn223318</a>). The probes were selected based on genes using a mapping file.(<a href="https://www.synapse.org/#!Synapse:syn2324928" target="_blank">syn2324928</span></a>). Hierarchical clustering was used to cluster rows and columns.</pre>'
#2. mRNA data notes
mRNA_data_notes <- 'Data Processing Notes:<br>Using mRNA normalized data matrix from <a href="https://www.synapse.org/#!Synapse:syn2701943" target="_blank">syn2701943</a> and metadata from <a href="https://www.synapse.org/#!Synapse:syn2731147" target="_blank">syn2731147</a>. Hierarchical clustering was used to cluster rows and columns.'
#3. miRNA data notes
miRNA_data_notes <- 'Data Processing Notes:<br>Using miRNA normalized data matrix from <a href="https://www.synapse.org/#!Synapse:syn2701942" target="_blank">syn2701942</a> and metadata from <a href="https://www.synapse.org/#!Synapse:syn2731149" target="_blank">syn2731149</a>. The miRNAs were selected based on target genes using a mapping file <a href="https://www.synapse.org/#!Synapse:syn2246991" target="_blank">syn2246991</a>. Hierarchical clustering was used to cluster rows and columns.'
#main UI code
shinyUI( fluidPage(
sidebarLayout(
##################################
#SIDE BAR PANEL FOR USER OPTIONS
##################################
sidebarPanel(
progressInit(),
h4('1. Select a gene list'),
tabsetPanel(
id = 'genelist_type',
#TAB PANEL 1 : custom gene list
tabPanel('My Search',
h5('1.a. Search on a custom gene list:'),
helpText("Accepts HUGO/Ensembl/Entrez gene ids"),
tags$textarea(id="custom_gene_list",
rows=8, cols=50,
paste0(sample_gene_list, collapse=', ')),
br(),
actionButton("custom_search", h4("Update")),
br(),
checkboxInput('incl_corr_genes', 'also include correlated genes', value = FALSE),
conditionalPanel(
condition="input.incl_corr_genes",
sliderInput('corr_threshold', label=h6('Correlation Threshold'),
min=0.5, max=1.0, value=0.9, step=0.05),
# correlation direction
selectInput("correlation_direction",
label=h6("Correlation Direction"),
choices=c("both", "positive", "negative"),
selectize=T, multiple=F, selected="both"),
br()
),
h5('1.b. Add miRNA Targets (mirbase ids):'),
tags$textarea(id="custom_miRNA_list",rows=4,cols=50),
br(),
actionButton("custom_search", h4("Update")),
br(),
value='custom_gene_list'
), #END TAB PANEL 1
# TAB PANEL 2 : select a pathway
tabPanel(
'Pathways',
selectInput("selected_pathways",
h5("1.a. Select Pathway/s"),
choices = names(pathways_list),
selectize=T, multiple=T, width='400px',
selected = names(pathways_list)[c(1:2)]),
value='pathway'
), #END TAB PANEL 2
#TAB PANEL 3 : precomputed sig gene list
tabPanel(
'Significant Genes',
tags$div(title="Significantly enriched gene lists as a result of pairwise comparison of all PCBC samples",
selectInput("selected_Significant_GeneList",
h5("Precomputed Significant gene lists (?)"),
selectize=FALSE,
choices = sort(names(precomputed_enrichedPathways_in_geneLists),), #loaded from getDATA.R
width='300px')
),
tags$div(title='Enriched KEGG pathways in the selected gene list based on FET test (padj <.05)',
uiOutput('enrichedPathways', inline=FALSE)),
value = 'precomputed_significant_geneList'
) #END TAB PANEL 3
),#END TABSET
br(),
#heatmap annotation labels
selectInput('heatmap_annotation_labels',
h4('2. Annotate Samples by:'),
choices = colnames(combined_metadata)[-1], #-1 to remove the first value "Sample"
selected='Differentiation_State'),
br(),
#FILTER OPTIONS
h4('3. Filter samples by:'),
#1. filter based on mod_linetype
selectInput('linetype', h5('Line type'),
choices=unique(combined_metadata$Cell_Line_Type),
selectize=T, multiple=T, selected=c('ESC','iPSC')),
selectInput('gene_combination', h5('Reprogramming Gene Combination'),
choices=unique(combined_metadata$Reprogramming_Gene_Combination),
selectize=T, multiple=T),
selectInput('vector_type', h5('Reprogramming Vector Type'),
choices=unique(combined_metadata$Reprogramming_Vector_Type),
selectize=T, multiple=T),
selectInput('tissue_origin', h5('Tissue of Origin'),
choices=unique(combined_metadata$Tissue_of_Origin),
selectize=T, multiple=T),
selectInput('diff_state', h5('Differentiation State'),
choices=unique(combined_metadata$Differentiation_State),
selectize=T, multiple=T),
selectInput('cell_origin', h5('Cell Type of Origin'),
choices=unique(combined_metadata$Cell_Type_of_Origin),
selectize=T, multiple=T),
selectInput('gender', h5('Gender'),
choices=unique(combined_metadata$Gender),
selectize=T, multiple=T),
selectInput('originating_lab_id', h5('Originating Lab ID'),
choices=unique(combined_metadata$Originating_Lab_ID),
selectize=T, multiple=T),
br(),
h4('4. Heatmap Settings:'),
#distance metric
selectInput("clustering_distance", "Distance Calculation",
choices=c("correlation", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
selectize=T, multiple=F, selected="correlation"),
#linkage
selectInput("clustering_method","Clustering Method",
choices=c("ward", "single", "complete", "average",
"mcquitty", "median", "centroid"),
selectize=T, multiple=F, selected="complete"),
checkboxInput('cluster_cols', 'Cluster the columns', value = TRUE),
checkboxInput('cluster_rows', 'Cluster the rows', value = TRUE),
width=3
), # END sidebarpanel
#####################
#Main shiny panel
#####################
mainPanel(
tabsetPanel(
tabPanel("mRNA",
plotOutput("mRNA_heatMap",height="700px",width="auto",hoverId=NULL),
br(),br(),br(),br(),
htmlOutput("topgene_linkOut"),
downloadButton('download_mRNAData','Download mRNA expression data'),
br(),br(),
HTML(mRNA_data_notes)
),
tabPanel("microRNA",
plotOutput("microRNA_heatMap",height="700px",width="auto",hoverId=NULL),
br(),br(),br(),br(),
downloadButton('download_miRNAData','Download microRNA expression data'),
br(),br(),
HTML(miRNA_data_notes)
),
tabPanel("methylation",
plotOutput("methylation_heatMap",height="700px",width="auto",hoverId=NULL),
br(),br(),br(),br(),
downloadButton('download_methylationData','Download methylation data'),
br(),br(),
HTML(meth_data_notes)
)
) #END tabset panel
)# END mainPanel
) #END sidebarLayout
) #END fluidpage
) #END shinyUI