-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpathmnist_app.py
36 lines (32 loc) · 1.22 KB
/
pathmnist_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import streamlit as st
from PIL import Image
import matplotlib.pyplot as plt
import torch
from torch import nn
from semilearn.models.model import BasicNet
from semilearn.datasets.medmnist_dataset import pathmnist_data_transform,n_classes
from medmnist import INFO
data_flag = 'pathmnist'
st.header('PathMNIST')
def predict(image):
classifier_model = 'checkpoint/2024-01-16 14:23:51/best_model_8_accuracy=0.8735.pt'
model = BasicNet(in_channels=3,num_classes=n_classes)
model.load_state_dict(torch.load(classifier_model,map_location='cpu'))
model.eval()
image_tensor = pathmnist_data_transform(image)
out_logit = model(image_tensor.unsqueeze(0))
scores = nn.Softmax(dim=1)(out_logit).squeeze(0)
prediction = torch.argmax(scores).item()
return INFO[data_flag]['label'][str(prediction)],torch.max(scores).item()
def main():
file_uploaded = st.file_uploader('Choose File',type=['png','jpg','jpeg'])
if file_uploaded is not None:
image = Image.open(file_uploaded)
fig = plt.figure()
plt.imshow(image)
plt.axis('off')
label,score = predict(image)
st.write({'prediction':label,'score':score})
st.pyplot(fig)
if __name__ == '__main__':
main()