forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compile.c
3678 lines (3273 loc) · 145 KB
/
compile.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2020 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/scope.h"
#include "py/emit.h"
#include "py/compile.h"
#include "py/runtime.h"
#include "py/asmbase.h"
#include "py/nativeglue.h"
#include "py/persistentcode.h"
#include "py/smallint.h"
#if MICROPY_ENABLE_COMPILER
#define INVALID_LABEL (0xffff)
typedef enum {
// define rules with a compile function
#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
#define DEF_RULE_NC(rule, kind, ...)
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
PN_const_object, // special node for a constant, generic Python object
// define rules without a compile function
#define DEF_RULE(rule, comp, kind, ...)
#define DEF_RULE_NC(rule, kind, ...) PN_##rule,
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
} pn_kind_t;
// Whether a mp_parse_node_struct_t that has pns->kind == PN_testlist_comp
// corresponds to a list comprehension or generator.
#define MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns) \
(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2 && \
MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for))
#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE
#if NEED_METHOD_TABLE
// we need a method table to do the lookup for the emitter functions
#define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST))
#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL))
#else
// if we only have the bytecode emitter enabled then we can do a direct call to the functions
#define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_local(comp->emit, qst, local_num, MP_EMIT_IDOP_LOCAL_FAST))
#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst, MP_EMIT_IDOP_GLOBAL_GLOBAL))
#endif
#if MICROPY_EMIT_NATIVE && MICROPY_DYNAMIC_COMPILER
#define NATIVE_EMITTER(f) emit_native_table[mp_dynamic_compiler.native_arch]->emit_##f
#define NATIVE_EMITTER_TABLE (emit_native_table[mp_dynamic_compiler.native_arch])
static const emit_method_table_t *emit_native_table[] = {
NULL,
&emit_native_x86_method_table,
&emit_native_x64_method_table,
&emit_native_arm_method_table,
&emit_native_thumb_method_table,
&emit_native_thumb_method_table,
&emit_native_thumb_method_table,
&emit_native_thumb_method_table,
&emit_native_thumb_method_table,
&emit_native_xtensa_method_table,
&emit_native_xtensawin_method_table,
&emit_native_rv32_method_table,
&emit_native_debug_method_table,
};
#elif MICROPY_EMIT_NATIVE
// define a macro to access external native emitter
#if MICROPY_EMIT_X64
#define NATIVE_EMITTER(f) emit_native_x64_##f
#elif MICROPY_EMIT_X86
#define NATIVE_EMITTER(f) emit_native_x86_##f
#elif MICROPY_EMIT_THUMB
#define NATIVE_EMITTER(f) emit_native_thumb_##f
#elif MICROPY_EMIT_ARM
#define NATIVE_EMITTER(f) emit_native_arm_##f
#elif MICROPY_EMIT_XTENSA
#define NATIVE_EMITTER(f) emit_native_xtensa_##f
#elif MICROPY_EMIT_XTENSAWIN
#define NATIVE_EMITTER(f) emit_native_xtensawin_##f
#elif MICROPY_EMIT_RV32
#define NATIVE_EMITTER(f) emit_native_rv32_##f
#elif MICROPY_EMIT_NATIVE_DEBUG
#define NATIVE_EMITTER(f) emit_native_debug_##f
#else
#error "unknown native emitter"
#endif
#define NATIVE_EMITTER_TABLE (&NATIVE_EMITTER(method_table))
#endif
#if MICROPY_EMIT_INLINE_ASM && MICROPY_DYNAMIC_COMPILER
#define ASM_EMITTER(f) emit_asm_table[mp_dynamic_compiler.native_arch]->asm_##f
#define ASM_EMITTER_TABLE emit_asm_table[mp_dynamic_compiler.native_arch]
static const emit_inline_asm_method_table_t *emit_asm_table[] = {
NULL,
NULL,
NULL,
&emit_inline_thumb_method_table,
&emit_inline_thumb_method_table,
&emit_inline_thumb_method_table,
&emit_inline_thumb_method_table,
&emit_inline_thumb_method_table,
&emit_inline_thumb_method_table,
&emit_inline_xtensa_method_table,
NULL,
};
#elif MICROPY_EMIT_INLINE_ASM
// define macros for inline assembler
#if MICROPY_EMIT_INLINE_THUMB
#define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb
#define ASM_EMITTER(f) emit_inline_thumb_##f
#elif MICROPY_EMIT_INLINE_XTENSA
#define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa
#define ASM_EMITTER(f) emit_inline_xtensa_##f
#else
#error "unknown asm emitter"
#endif
#define ASM_EMITTER_TABLE &ASM_EMITTER(method_table)
#endif
#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))
// elements in this struct are ordered to make it compact
typedef struct _compiler_t {
uint8_t is_repl;
uint8_t pass; // holds enum type pass_kind_t
uint8_t have_star;
// try to keep compiler clean from nlr
mp_obj_t compile_error; // set to an exception object if there's an error
size_t compile_error_line; // set to best guess of line of error
uint next_label;
uint16_t num_dict_params;
uint16_t num_default_params;
uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
uint16_t continue_label;
uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
uint16_t break_continue_except_level;
scope_t *scope_head;
scope_t *scope_cur;
emit_t *emit; // current emitter
#if NEED_METHOD_TABLE
const emit_method_table_t *emit_method_table; // current emit method table
#endif
#if MICROPY_EMIT_INLINE_ASM
emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm
const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm
#endif
mp_emit_common_t emit_common;
} compiler_t;
#if MICROPY_COMP_ALLOW_TOP_LEVEL_AWAIT
bool mp_compile_allow_top_level_await = false;
#endif
/******************************************************************************/
// mp_emit_common_t helper functions
// These are defined here so they can be inlined, to reduce code size.
static void mp_emit_common_init(mp_emit_common_t *emit, qstr source_file) {
#if MICROPY_EMIT_BYTECODE_USES_QSTR_TABLE
mp_map_init(&emit->qstr_map, 1);
// add the source file as the first entry in the qstr table
mp_map_elem_t *elem = mp_map_lookup(&emit->qstr_map, MP_OBJ_NEW_QSTR(source_file), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
elem->value = MP_OBJ_NEW_SMALL_INT(0);
#endif
mp_obj_list_init(&emit->const_obj_list, 0);
}
static void mp_emit_common_start_pass(mp_emit_common_t *emit, pass_kind_t pass) {
emit->pass = pass;
if (pass == MP_PASS_CODE_SIZE) {
if (emit->ct_cur_child == 0) {
emit->children = NULL;
} else {
emit->children = m_new0(mp_raw_code_t *, emit->ct_cur_child);
}
}
emit->ct_cur_child = 0;
}
static void mp_emit_common_populate_module_context(mp_emit_common_t *emit, qstr source_file, mp_module_context_t *context) {
#if MICROPY_EMIT_BYTECODE_USES_QSTR_TABLE
size_t qstr_map_used = emit->qstr_map.used;
mp_module_context_alloc_tables(context, qstr_map_used, emit->const_obj_list.len);
for (size_t i = 0; i < emit->qstr_map.alloc; ++i) {
if (mp_map_slot_is_filled(&emit->qstr_map, i)) {
size_t idx = MP_OBJ_SMALL_INT_VALUE(emit->qstr_map.table[i].value);
qstr qst = MP_OBJ_QSTR_VALUE(emit->qstr_map.table[i].key);
context->constants.qstr_table[idx] = qst;
}
}
#else
mp_module_context_alloc_tables(context, 0, emit->const_obj_list.len);
context->constants.source_file = source_file;
#endif
for (size_t i = 0; i < emit->const_obj_list.len; ++i) {
context->constants.obj_table[i] = emit->const_obj_list.items[i];
}
}
/******************************************************************************/
static void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) {
// if the line of the error is unknown then try to update it from the pn
if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) {
comp->compile_error_line = ((mp_parse_node_struct_t *)pn)->source_line;
}
}
static void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, mp_rom_error_text_t msg) {
// only register the error if there has been no other error
if (comp->compile_error == MP_OBJ_NULL) {
comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
compile_error_set_line(comp, pn);
}
}
static void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra);
static void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind);
static void compile_atom_brace_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool create_map);
static void compile_node(compiler_t *comp, mp_parse_node_t pn);
static uint comp_next_label(compiler_t *comp) {
return comp->next_label++;
}
#if MICROPY_EMIT_NATIVE
static void reserve_labels_for_native(compiler_t *comp, int n) {
if (comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
comp->next_label += n;
}
}
#else
#define reserve_labels_for_native(comp, n)
#endif
static void compile_increase_except_level(compiler_t *comp, uint label, int kind) {
EMIT_ARG(setup_block, label, kind);
comp->cur_except_level += 1;
if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
comp->scope_cur->exc_stack_size = comp->cur_except_level;
}
}
static void compile_decrease_except_level(compiler_t *comp) {
assert(comp->cur_except_level > 0);
comp->cur_except_level -= 1;
EMIT(end_finally);
reserve_labels_for_native(comp, 1);
}
static scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
scope_t *scope = scope_new(kind, pn, emit_options);
scope->parent = comp->scope_cur;
scope->next = NULL;
if (comp->scope_head == NULL) {
comp->scope_head = scope;
} else {
scope_t *s = comp->scope_head;
while (s->next != NULL) {
s = s->next;
}
s->next = scope;
}
return scope;
}
typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn);
static void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
f(comp, pns->nodes[i]);
}
} else if (!MP_PARSE_NODE_IS_NULL(pn)) {
f(comp, pn);
}
}
static void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
compile_node(comp, pns->nodes[i]);
if (comp->compile_error != MP_OBJ_NULL) {
// add line info for the error in case it didn't have a line number
compile_error_set_line(comp, pns->nodes[i]);
return;
}
}
}
static void compile_load_id(compiler_t *comp, qstr qst) {
if (comp->pass == MP_PASS_SCOPE) {
mp_emit_common_get_id_for_load(comp->scope_cur, qst);
} else {
#if NEED_METHOD_TABLE
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
#else
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
#endif
}
}
static void compile_store_id(compiler_t *comp, qstr qst) {
if (comp->pass == MP_PASS_SCOPE) {
mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
} else {
#if NEED_METHOD_TABLE
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
#else
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
#endif
}
}
static void compile_delete_id(compiler_t *comp, qstr qst) {
if (comp->pass == MP_PASS_SCOPE) {
mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
} else {
#if NEED_METHOD_TABLE
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
#else
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
#endif
}
}
static void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) {
// a simple tuple expression
size_t num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (size_t i = 0; i < num_nodes; i++) {
compile_node(comp, pns->nodes[i]);
}
EMIT_ARG(build, num_nodes, MP_EMIT_BUILD_TUPLE);
}
static void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) {
if (mp_parse_node_is_const_false(pn)) {
if (jump_if == false) {
EMIT_ARG(jump, label);
}
return;
} else if (mp_parse_node_is_const_true(pn)) {
if (jump_if == true) {
EMIT_ARG(jump, label);
}
return;
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
if (jump_if == false) {
and_or_logic1:;
uint label2 = comp_next_label(comp);
for (int i = 0; i < n - 1; i++) {
c_if_cond(comp, pns->nodes[i], !jump_if, label2);
}
c_if_cond(comp, pns->nodes[n - 1], jump_if, label);
EMIT_ARG(label_assign, label2);
} else {
and_or_logic2:
for (int i = 0; i < n; i++) {
c_if_cond(comp, pns->nodes[i], jump_if, label);
}
}
return;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
if (jump_if == false) {
goto and_or_logic2;
} else {
goto and_or_logic1;
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
c_if_cond(comp, pns->nodes[0], !jump_if, label);
return;
}
}
// nothing special, fall back to default compiling for node and jump
compile_node(comp, pn);
EMIT_ARG(pop_jump_if, jump_if, label);
}
typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
static void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind);
static void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) {
if (assign_kind != ASSIGN_AUG_STORE) {
compile_node(comp, pns->nodes[0]);
}
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
if (assign_kind != ASSIGN_AUG_STORE) {
for (int i = 0; i < n - 1; i++) {
compile_node(comp, pns1->nodes[i]);
}
}
assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1];
}
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
if (assign_kind == ASSIGN_AUG_STORE) {
EMIT(rot_three);
EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE);
} else {
compile_node(comp, pns1->nodes[0]);
if (assign_kind == ASSIGN_AUG_LOAD) {
EMIT(dup_top_two);
EMIT_ARG(subscr, MP_EMIT_SUBSCR_LOAD);
} else {
EMIT_ARG(subscr, MP_EMIT_SUBSCR_STORE);
}
}
return;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
if (assign_kind == ASSIGN_AUG_LOAD) {
EMIT(dup_top);
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_LOAD);
} else {
if (assign_kind == ASSIGN_AUG_STORE) {
EMIT(rot_two);
}
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_STORE);
}
return;
}
}
compile_syntax_error(comp, (mp_parse_node_t)pns, MP_ERROR_TEXT("can't assign to expression"));
}
static void c_assign_tuple(compiler_t *comp, uint num_tail, mp_parse_node_t *nodes_tail) {
// look for star expression
uint have_star_index = -1;
for (uint i = 0; i < num_tail; i++) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) {
if (have_star_index == (uint)-1) {
EMIT_ARG(unpack_ex, i, num_tail - i - 1);
have_star_index = i;
} else {
compile_syntax_error(comp, nodes_tail[i], MP_ERROR_TEXT("multiple *x in assignment"));
return;
}
}
}
if (have_star_index == (uint)-1) {
EMIT_ARG(unpack_sequence, num_tail);
}
for (uint i = 0; i < num_tail; i++) {
if (i == have_star_index) {
c_assign(comp, ((mp_parse_node_struct_t *)nodes_tail[i])->nodes[0], ASSIGN_STORE);
} else {
c_assign(comp, nodes_tail[i], ASSIGN_STORE);
}
}
}
// assigns top of stack to pn
static void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) {
assert(!MP_PARSE_NODE_IS_NULL(pn));
if (MP_PARSE_NODE_IS_LEAF(pn)) {
if (MP_PARSE_NODE_IS_ID(pn)) {
qstr arg = MP_PARSE_NODE_LEAF_ARG(pn);
switch (assign_kind) {
case ASSIGN_STORE:
case ASSIGN_AUG_STORE:
compile_store_id(comp, arg);
break;
case ASSIGN_AUG_LOAD:
default:
compile_load_id(comp, arg);
break;
}
} else {
goto cannot_assign;
}
} else {
// pn must be a struct
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
case PN_atom_expr_normal:
// lhs is an index or attribute
c_assign_atom_expr(comp, pns, assign_kind);
break;
case PN_testlist_star_expr:
case PN_exprlist:
// lhs is a tuple
if (assign_kind != ASSIGN_STORE) {
goto cannot_assign;
}
c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
break;
case PN_atom_paren:
// lhs is something in parenthesis
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// empty tuple
goto cannot_assign;
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
if (assign_kind != ASSIGN_STORE) {
goto cannot_assign;
}
pns = (mp_parse_node_struct_t *)pns->nodes[0];
goto testlist_comp;
}
break;
case PN_atom_bracket:
// lhs is something in brackets
if (assign_kind != ASSIGN_STORE) {
goto cannot_assign;
}
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// empty list, assignment allowed
c_assign_tuple(comp, 0, NULL);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
pns = (mp_parse_node_struct_t *)pns->nodes[0];
goto testlist_comp;
} else {
// brackets around 1 item
c_assign_tuple(comp, 1, pns->nodes);
}
break;
default:
goto cannot_assign;
}
return;
testlist_comp:
// lhs is a sequence
if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) {
goto cannot_assign;
}
c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
return;
}
return;
cannot_assign:
compile_syntax_error(comp, pn, MP_ERROR_TEXT("can't assign to expression"));
}
// stuff for lambda and comprehensions and generators:
// if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
// if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
// if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
static void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
assert(n_pos_defaults >= 0);
assert(n_kw_defaults >= 0);
// set flags
if (n_kw_defaults > 0) {
this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
}
this_scope->num_def_pos_args = n_pos_defaults;
#if MICROPY_EMIT_NATIVE
// When creating a function/closure it will take a reference to the current globals
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS;
#endif
// make closed over variables, if any
// ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
int nfree = 0;
if (comp->scope_cur->kind != SCOPE_MODULE) {
for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
id_info_t *id = &comp->scope_cur->id_info[i];
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
for (int j = 0; j < this_scope->id_info_len; j++) {
id_info_t *id2 = &this_scope->id_info[j];
if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
// in MicroPython we load closures using LOAD_FAST
EMIT_LOAD_FAST(id->qst, id->local_num);
nfree += 1;
}
}
}
}
}
// make the function/closure
if (nfree == 0) {
EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
} else {
EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
}
}
static void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) {
// For efficiency of the code below we extract the parse-node kind here
int pn_kind;
if (MP_PARSE_NODE_IS_ID(pn)) {
pn_kind = -1;
} else {
assert(MP_PARSE_NODE_IS_STRUCT(pn));
pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t *)pn);
}
if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) {
comp->have_star = true;
/* don't need to distinguish bare from named star
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// bare star
} else {
// named star
}
*/
} else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) {
// named double star
// TODO do we need to do anything with this?
} else {
mp_parse_node_t pn_id;
mp_parse_node_t pn_equal;
if (pn_kind == -1) {
// this parameter is just an id
pn_id = pn;
pn_equal = MP_PARSE_NODE_NULL;
} else if (pn_kind == PN_typedargslist_name) {
// this parameter has a colon and/or equal specifier
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
pn_id = pns->nodes[0];
// pn_colon = pns->nodes[1]; // unused
pn_equal = pns->nodes[2];
} else {
assert(pn_kind == PN_varargslist_name); // should be
// this parameter has an equal specifier
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
pn_id = pns->nodes[0];
pn_equal = pns->nodes[1];
}
if (MP_PARSE_NODE_IS_NULL(pn_equal)) {
// this parameter does not have a default value
// check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
if (!comp->have_star && comp->num_default_params != 0) {
compile_syntax_error(comp, pn, MP_ERROR_TEXT("non-default argument follows default argument"));
return;
}
} else {
// this parameter has a default value
// in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
if (comp->have_star) {
comp->num_dict_params += 1;
// in MicroPython we put the default dict parameters into a dictionary using the bytecode
if (comp->num_dict_params == 1) {
// in MicroPython we put the default positional parameters into a tuple using the bytecode
// we need to do this here before we start building the map for the default keywords
if (comp->num_default_params > 0) {
EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE);
} else {
EMIT(load_null); // sentinel indicating empty default positional args
}
// first default dict param, so make the map
EMIT_ARG(build, 0, MP_EMIT_BUILD_MAP);
}
// compile value then key, then store it to the dict
compile_node(comp, pn_equal);
EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id));
EMIT(store_map);
} else {
comp->num_default_params += 1;
compile_node(comp, pn_equal);
}
}
}
}
static void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) {
// When we call compile_funcdef_lambdef_param below it can compile an arbitrary
// expression for default arguments, which may contain a lambda. The lambda will
// call here in a nested way, so we must save and restore the relevant state.
bool orig_have_star = comp->have_star;
uint16_t orig_num_dict_params = comp->num_dict_params;
uint16_t orig_num_default_params = comp->num_default_params;
// compile default parameters
comp->have_star = false;
comp->num_dict_params = 0;
comp->num_default_params = 0;
apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param);
if (comp->compile_error != MP_OBJ_NULL) {
return;
}
// in MicroPython we put the default positional parameters into a tuple using the bytecode
// the default keywords args may have already made the tuple; if not, do it now
if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
EMIT_ARG(build, comp->num_default_params, MP_EMIT_BUILD_TUPLE);
EMIT(load_null); // sentinel indicating empty default keyword args
}
// make the function
close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);
// restore state
comp->have_star = orig_have_star;
comp->num_dict_params = orig_num_dict_params;
comp->num_default_params = orig_num_default_params;
}
// leaves function object on stack
// returns function name
static qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this function
scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options);
// store the function scope so the compiling function can use it at each pass
pns->nodes[4] = (mp_parse_node_t)s;
}
// get the scope for this function
scope_t *fscope = (scope_t *)pns->nodes[4];
// compile the function definition
compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist);
// return its name (the 'f' in "def f(...):")
return fscope->simple_name;
}
// leaves class object on stack
// returns class name
static qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this class
scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options);
// store the class scope so the compiling function can use it at each pass
pns->nodes[3] = (mp_parse_node_t)s;
}
EMIT(load_build_class);
// scope for this class
scope_t *cscope = (scope_t *)pns->nodes[3];
// compile the class
close_over_variables_etc(comp, cscope, 0, 0);
// get its name
EMIT_ARG(load_const_str, cscope->simple_name);
// nodes[1] has parent classes, if any
// empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
mp_parse_node_t parents = pns->nodes[1];
if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) {
parents = MP_PARSE_NODE_NULL;
}
compile_trailer_paren_helper(comp, parents, false, 2);
// return its name (the 'C' in class C(...):")
return cscope->simple_name;
}
// returns true if it was a built-in decorator (even if the built-in had an error)
static bool compile_built_in_decorator(compiler_t *comp, size_t name_len, mp_parse_node_t *name_nodes, uint *emit_options) {
if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) {
return false;
}
if (name_len != 2) {
compile_syntax_error(comp, name_nodes[0], MP_ERROR_TEXT("invalid micropython decorator"));
return true;
}
qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]);
if (attr == MP_QSTR_bytecode) {
*emit_options = MP_EMIT_OPT_BYTECODE;
#if MICROPY_EMIT_NATIVE
} else if (attr == MP_QSTR_native) {
*emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
} else if (attr == MP_QSTR_viper) {
*emit_options = MP_EMIT_OPT_VIPER;
#endif
#if MICROPY_EMIT_INLINE_ASM
#if MICROPY_DYNAMIC_COMPILER
} else if (attr == MP_QSTR_asm_thumb) {
*emit_options = MP_EMIT_OPT_ASM;
} else if (attr == MP_QSTR_asm_xtensa) {
*emit_options = MP_EMIT_OPT_ASM;
#else
} else if (attr == ASM_DECORATOR_QSTR) {
*emit_options = MP_EMIT_OPT_ASM;
#endif
#endif
} else {
compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid micropython decorator"));
}
#if MICROPY_EMIT_NATIVE && MICROPY_DYNAMIC_COMPILER
if (*emit_options == MP_EMIT_OPT_NATIVE_PYTHON || *emit_options == MP_EMIT_OPT_VIPER) {
if (emit_native_table[mp_dynamic_compiler.native_arch] == NULL) {
compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid arch"));
}
} else if (*emit_options == MP_EMIT_OPT_ASM) {
if (emit_asm_table[mp_dynamic_compiler.native_arch] == NULL) {
compile_syntax_error(comp, name_nodes[1], MP_ERROR_TEXT("invalid arch"));
}
}
#endif
return true;
}
static void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) {
// get the list of decorators
mp_parse_node_t *nodes;
size_t n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes);
// inherit emit options for this function/class definition
uint emit_options = comp->scope_cur->emit_options;
// compile each decorator
size_t num_built_in_decorators = 0;
for (size_t i = 0; i < n; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be
mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t *)nodes[i];
// nodes[0] contains the decorator function, which is a dotted name
mp_parse_node_t *name_nodes;
size_t name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes);
// check for built-in decorators
if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) {
// this was a built-in
num_built_in_decorators += 1;
} else {
// not a built-in, compile normally
// compile the decorator function
compile_node(comp, name_nodes[0]);
for (size_t j = 1; j < name_len; j++) {
assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]), MP_EMIT_ATTR_LOAD);
}
// nodes[1] contains arguments to the decorator function, if any
if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) {
// call the decorator function with the arguments in nodes[1]
compile_node(comp, pns_decorator->nodes[1]);
}
}
}
// compile the body (funcdef, async funcdef or classdef) and get its name
mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t *)pns->nodes[1];
qstr body_name = 0;
if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) {
body_name = compile_funcdef_helper(comp, pns_body, emit_options);
#if MICROPY_PY_ASYNC_AWAIT
} else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) {
assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0]));
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t *)pns_body->nodes[0];
body_name = compile_funcdef_helper(comp, pns0, emit_options);
scope_t *fscope = (scope_t *)pns0->nodes[4];
fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
#endif
} else {
assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be
body_name = compile_classdef_helper(comp, pns_body, emit_options);
}
// call each decorator
for (size_t i = 0; i < n - num_built_in_decorators; i++) {
EMIT_ARG(call_function, 1, 0, 0);
}
// store func/class object into name
compile_store_id(comp, body_name);
}
static void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options);
// store function object into function name
compile_store_id(comp, fname);
}
static void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_ID(pn)) {
compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn));
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
for (int i = 0; i < n - 1; i++) {
compile_node(comp, pns1->nodes[i]);
}
assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
pns1 = (mp_parse_node_struct_t *)pns1->nodes[n - 1];
}
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
compile_node(comp, pns1->nodes[0]);
EMIT_ARG(subscr, MP_EMIT_SUBSCR_DELETE);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
EMIT_ARG(attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]), MP_EMIT_ATTR_DELETE);
} else {
goto cannot_delete;
}
} else {
goto cannot_delete;
}
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) {
pn = ((mp_parse_node_struct_t *)pn)->nodes[0];
if (MP_PARSE_NODE_IS_NULL(pn)) {
goto cannot_delete;
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
if (MP_PARSE_NODE_TESTLIST_COMP_HAS_COMP_FOR(pns)) {
goto cannot_delete;
}
for (size_t i = 0; i < MP_PARSE_NODE_STRUCT_NUM_NODES(pns); ++i) {
c_del_stmt(comp, pns->nodes[i]);
}
}