diff --git a/scripts/import_search_suggestions.py b/scripts/import_search_suggestions.py new file mode 100755 index 0000000000..5428aa3928 --- /dev/null +++ b/scripts/import_search_suggestions.py @@ -0,0 +1,124 @@ +#!/usr/bin/env python3 +# encoding: utf-8 +""" +import_search_suggestions.py - Import vector search suggestions + +See python scripts/import_search_suggestions.py --help for usage. + +""" + +import re +import sys +from pathlib import Path +from typing import cast +from warnings import filterwarnings + +import MySQLdb +import pandas as pd +import rich_click as click +from pylib.mysociety import config +from rich import print +from rich.prompt import Prompt + +repository_path = Path(__file__).parent.parent + +config.set_file(repository_path / "conf" / "general") + +# suppress warnings about using mysqldb in pandas +filterwarnings( + "ignore", + category=UserWarning, + message=".*pandas only supports SQLAlchemy connectable.*", +) + + +@click.group() +def cli(): + pass + + +def get_twfy_db_connection() -> MySQLdb.Connection: + db_connection = cast( + MySQLdb.Connection, + MySQLdb.connect( + host=config.get("TWFY_DB_HOST"), + db=config.get("TWFY_DB_NAME"), + user=config.get("TWFY_DB_USER"), + passwd=config.get("TWFY_DB_PASS"), + charset="utf8", + ), + ) + return db_connection + + +def df_to_db(df: pd.DataFrame, verbose: bool = False): + """ + add search suggestions to the database + """ + df = df.dropna(how="any") + db_connection = get_twfy_db_connection() + + with db_connection.cursor() as cursor: + # just remove everything and re-insert it all rather than trying to update things + cursor.execute("DELETE FROM vector_search_suggestions") + insert_command = "INSERT INTO vector_search_suggestions (search_term, search_suggestion) VALUES (%s, %s)" + suggestion_data = [ + (row["original_query"], row["match"]) for _, row in df.iterrows() + ] + cursor.executemany(insert_command, suggestion_data) + db_connection.commit() + + if verbose: + print(f"[green]{len(df)} rows updated.") + + db_connection.close() + + +def url_to_db(url: str, verbose: bool = False): + """ + Pipe external URL into the update process. + """ + df = pd.read_csv(url) + + df_to_db(df, verbose=verbose) + + +def file_to_db(file: str, verbose: bool = False): + """ + Pipe file into the update process. + """ + df = pd.read_csv(file) + + df_to_db(df, verbose=verbose) + + +@cli.command() +@click.option( + "--url", + required=False, + default=None, + help="A csv file to update search suggestions from.", +) +@click.option( + "--file", + required=False, + default=None, + help="A csv file to update search suggestions from.", +) +@click.option("--verbose", is_flag=True, help="Show verbose output") +def update_vector_search_suggestions(url: str, file: str, verbose: bool = False): + """ + Update the vector search suggestions + """ + if file: + file_to_db(file, verbose=verbose) + elif url: + url_to_db(url, verbose=verbose) + + +def main(): + cli() + + +if __name__ == "__main__": + main()