From 49a8714ee5c7470dbacdd7298ead77ba038f035a Mon Sep 17 00:00:00 2001 From: Vladislav Golubev Date: Tue, 18 May 2021 14:40:13 +0300 Subject: [PATCH] [CPU] FakeQuantize: new cases support (#5497) --- .../nodes/mkldnn_fake_quantize_node.cpp | 26 +++++++++---------- .../single_layer_tests/fake_quantize.cpp | 23 ++++++++++++++++ 2 files changed, 36 insertions(+), 13 deletions(-) diff --git a/inference-engine/src/mkldnn_plugin/nodes/mkldnn_fake_quantize_node.cpp b/inference-engine/src/mkldnn_plugin/nodes/mkldnn_fake_quantize_node.cpp index 0a5ad38507bda5..b12bed6a47672b 100644 --- a/inference-engine/src/mkldnn_plugin/nodes/mkldnn_fake_quantize_node.cpp +++ b/inference-engine/src/mkldnn_plugin/nodes/mkldnn_fake_quantize_node.cpp @@ -10,6 +10,7 @@ #include #include #include "utils/general_utils.h" +#include "utils/cpu_utils.hpp" #include #include @@ -841,7 +842,7 @@ bool MKLDNNFakeQuantizeNode::isSupportedOperation(const std::shared_ptrget_input_size(); i++) { size_t count_not_unit_axis = 0; - auto shape = fq->get_input_shape(i); + auto shape = getNormalizedDimsBySize(fq->get_input_shape(i), fq->get_input_shape(0).size()); if (ngraph::shape_size(shape) != 1) { size_t not_unit_axis = 0; @@ -885,9 +886,7 @@ MKLDNNFakeQuantizeNode::MKLDNNFakeQuantizeNode(const std::shared_ptrget_output_size() != 1) IE_THROW() << errorPrefix << "has incorrect number of output edges: " << fq->get_output_size(); - auto initAxisIdx = [&](size_t edgeIdx) { - const auto &inputDims = fq->get_input_shape(edgeIdx); - + auto initAxisIdx = [&](const ngraph::Shape& inputDims) { size_t axisIdx = 0; for (int i = 1; i < inputDims.size(); i++) { if (inputDims[i] > 1) { @@ -898,35 +897,36 @@ MKLDNNFakeQuantizeNode::MKLDNNFakeQuantizeNode(const std::shared_ptrget_input_shape(0).size() == 1 ? 0 : 1; + const size_t dataNDims = fq->get_input_shape(0).size(); + axis = dataNDims == 1 ? 0 : 1; int axisSize = -1; - auto inputLowAxis = initAxisIdx(1); - const auto ilShape = fq->get_input_shape(1); + const auto ilShape = getNormalizedDimsBySize(fq->get_input_shape(1), dataNDims); + auto inputLowAxis = initAxisIdx(ilShape); isInputLowBroadcasted = (ngraph::is_scalar(ilShape) || ilShape[inputLowAxis] == 1); if (!isInputLowBroadcasted) { axis = inputLowAxis; axisSize = ilShape[inputLowAxis]; } - auto inputHighAxis = initAxisIdx(2); - const auto ihShape = fq->get_input_shape(2); + const auto ihShape = getNormalizedDimsBySize(fq->get_input_shape(2), dataNDims); + auto inputHighAxis = initAxisIdx(ihShape); isInputHighBroadcasted = (ngraph::is_scalar(ihShape) || ihShape[inputHighAxis] == 1); if (!isInputHighBroadcasted) { axis = inputHighAxis; axisSize = ihShape[inputHighAxis]; } - auto outputLowAxis = initAxisIdx(3); - const auto olShape = fq->get_input_shape(3); + const auto olShape = getNormalizedDimsBySize(fq->get_input_shape(3), dataNDims); + auto outputLowAxis = initAxisIdx(olShape); isOutputLowBroadcasted = (ngraph::is_scalar(olShape) || olShape[outputLowAxis] == 1); if (!isOutputLowBroadcasted) { axis = outputLowAxis; axisSize = olShape[outputLowAxis]; } - auto outputHighAxis = initAxisIdx(4); - const auto ohShape = fq->get_input_shape(4); + const auto ohShape = getNormalizedDimsBySize(fq->get_input_shape(4), dataNDims); + auto outputHighAxis = initAxisIdx(ohShape); isOutputHighBroadcasted = (ngraph::is_scalar(ohShape) || ohShape[outputHighAxis] == 1); if (!isOutputHighBroadcasted) { axis = outputHighAxis; diff --git a/inference-engine/tests/functional/plugin/cpu/shared_tests_instances/single_layer_tests/fake_quantize.cpp b/inference-engine/tests/functional/plugin/cpu/shared_tests_instances/single_layer_tests/fake_quantize.cpp index fcaa41f72f09d3..3dbb6f5fd539b5 100644 --- a/inference-engine/tests/functional/plugin/cpu/shared_tests_instances/single_layer_tests/fake_quantize.cpp +++ b/inference-engine/tests/functional/plugin/cpu/shared_tests_instances/single_layer_tests/fake_quantize.cpp @@ -89,4 +89,27 @@ INSTANTIATE_TEST_CASE_P(smoke_FakeQuantizePerChannelAxis1, FakeQuantizeLayerTest ::testing::Values(CommonTestUtils::DEVICE_CPU), ::testing::Values(config)), FakeQuantizeLayerTest::getTestCaseName); + +const std::vector> inputShapesPerChannel2D = {{1, 10}}; +const std::vector> constShapesPerChannel2D = { {10}, {1, 10}, {1} }; +const auto fqParamsPerChannel2D = ::testing::Combine( + ::testing::ValuesIn(levels), + ::testing::ValuesIn(constShapesPerChannel2D), + ::testing::Values(fqArgs), + ::testing::Values(inputParams) +); + +INSTANTIATE_TEST_CASE_P(smoke_FakeQuantizePerChannel2D, FakeQuantizeLayerTest, + ::testing::Combine( + fqParamsPerChannel2D, + ::testing::ValuesIn(netPrecisions), + ::testing::Values(InferenceEngine::Precision::UNSPECIFIED), + ::testing::Values(InferenceEngine::Precision::UNSPECIFIED), + ::testing::Values(InferenceEngine::Layout::ANY), + ::testing::Values(InferenceEngine::Layout::ANY), + ::testing::ValuesIn(inputShapesPerChannel2D), + ::testing::Values(CommonTestUtils::DEVICE_CPU), + ::testing::Values(config)), + FakeQuantizeLayerTest::getTestCaseName); + } // namespace