-
Notifications
You must be signed in to change notification settings - Fork 86
/
mypaint-tiled-surface.c
974 lines (862 loc) · 35.2 KB
/
mypaint-tiled-surface.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
/* libmypaint - The MyPaint Brush Library
* Copyright (C) 2007-2014 Martin Renold <[email protected]> et. al.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "config.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "mypaint-config.h"
#include "mypaint-tiled-surface.h"
#include "tiled-surface-private.h"
#include "helpers.h"
#include "brushmodes.h"
#include "operationqueue.h"
void process_tile(MyPaintTiledSurface *self, int tx, int ty);
static void
begin_atomic_default(MyPaintSurface *surface)
{
mypaint_tiled_surface_begin_atomic((MyPaintTiledSurface *)surface);
}
static void
end_atomic_default(MyPaintSurface *surface, MyPaintRectangles *roi)
{
mypaint_tiled_surface_end_atomic((MyPaintTiledSurface *)surface, roi);
}
void
prepare_bounding_boxes(MyPaintTiledSurface *self) {
MyPaintSymmetryState symm_state = self->symmetry_data.state_current;
const gboolean snowflake = symm_state.type == MYPAINT_SYMMETRY_TYPE_SNOWFLAKE;
const int num_bboxes_desired = symm_state.num_lines * (snowflake ? 2 : 1);
// If the bounding box array cannot fit one rectangle per symmetry dab,
// try to allocate enough space for that to be possible.
// Failure is ok, as the bounding box assignments will be functional anyway.
if (num_bboxes_desired > self->num_bboxes) {
const int margin = 10; // Add margin to avoid unnecessary reallocations.
const int num_to_allocate = num_bboxes_desired + margin;
int bytes_to_allocate = num_to_allocate * sizeof(MyPaintRectangle);
MyPaintRectangle* new_bboxes = malloc(bytes_to_allocate);
if (new_bboxes) {
if (self->num_bboxes > NUM_BBOXES_DEFAULT) {
// Free previous allocation
free(self->bboxes);
}
// Initialize memory
memset(new_bboxes, 0, bytes_to_allocate);
self->bboxes = new_bboxes;
self->num_bboxes = num_to_allocate;
// No need to clear anything after the memset, so reset counter
self->num_bboxes_dirtied = 0;
}
}
// Clean up any previously populated bounding boxes and reset the counter
for (int i = 0; i < MIN(self->num_bboxes, self->num_bboxes_dirtied); ++i) {
self->bboxes[i].height = 0;
self->bboxes[i].width = 0;
self->bboxes[i].x = 0;
self->bboxes[i].y = 0;
}
self->num_bboxes_dirtied = 0;
}
/**
* mypaint_tiled_surface_begin_atomic: (skip)
*
* Implementation of #MyPaintSurface::being_atomic vfunc
* Note: Only intended to be used from #MyPaintTiledSurface subclasses, which should chain up to this
* if implementing their own #MyPaintSurface::begin_atomic vfunc.
* Application code should only use mypaint_surface_being_atomic()
*/
void
mypaint_tiled_surface_begin_atomic(MyPaintTiledSurface *self)
{
mypaint_update_symmetry_state(&self->symmetry_data);
prepare_bounding_boxes(self);
}
/**
* mypaint_tiled_surface_end_atomic: (skip)
*
* Implementation of #MyPaintSurface::end_atomic vfunc
* Note: Only intended to be used from #MyPaintTiledSurface subclasses, which should chain up to this
* if implementing their own #MyPaintSurface::end_atomic vfunc.
* Application code should only use mypaint_surface_end_atomic().
*/
void
mypaint_tiled_surface_end_atomic(MyPaintTiledSurface *self, MyPaintRectangles *roi)
{
// Process tiles
TileIndex *tiles;
int tiles_n = operation_queue_get_dirty_tiles(self->operation_queue, &tiles);
#pragma omp parallel for schedule(static) if(self->threadsafe_tile_requests && tiles_n > 3)
for (int i = 0; i < tiles_n; i++) {
process_tile(self, tiles[i].x, tiles[i].y);
}
operation_queue_clear_dirty_tiles(self->operation_queue);
if (roi) {
const int roi_rects = roi->num_rectangles;
const int num_dirty = self->num_bboxes_dirtied;
// Clear out the input rectangles that will be overwritten
for (int i = 0; i < MIN(roi_rects, num_dirty); ++i) {
roi->rectangles[i].x = 0;
roi->rectangles[i].y = 0;
roi->rectangles[i].width = 0;
roi->rectangles[i].height = 0;
}
// Write bounding box rectangles to the output array
const float bboxes_per_output = MAX(1, (float)num_dirty / roi_rects);
for (int i = 0; i < num_dirty; ++i) {
int out_index;
// If there is not enough space for all rectangles in the output,
// merge some of the rectangles with their list-adjacent neighbours.
if (num_dirty > roi_rects) {
out_index = (int)MIN(roi_rects - 1, roundf((float)i / bboxes_per_output));
} else {
out_index = i;
}
mypaint_rectangle_expand_to_include_rect(&(roi->rectangles[out_index]), &(self->bboxes[i]));
}
// Set the number of rectangles written to, so the caller knows which ones to act on.
roi->num_rectangles = MIN(roi_rects, num_dirty);
}
}
/**
* mypaint_tiled_surface_tile_request_start:
*
* Fetch a tile out from the underlying tile store.
* When successful, request->data will be set to point to the fetched tile.
* Consumers must *always* call mypaint_tiled_surface_tile_request_end() with the same
* request to complete the transaction.
*/
void mypaint_tiled_surface_tile_request_start(MyPaintTiledSurface *self, MyPaintTileRequest *request)
{
assert(self->tile_request_start);
self->tile_request_start(self, request);
}
/**
* mypaint_tiled_surface_tile_request_end:
*
* Put a (potentially modified) tile back into the underlying tile store.
*
* Consumers must *always* call mypaint_tiled_surface_tile_request_start() with the same
* request to start the transaction before calling this function.
*/
void mypaint_tiled_surface_tile_request_end(MyPaintTiledSurface *self, MyPaintTileRequest *request)
{
assert(self->tile_request_end);
self->tile_request_end(self, request);
}
/* FIXME: either expose this through MyPaintSurface, or move it into the brush engine */
/**
* mypaint_tiled_surface_set_symmetry_state:
* @active: TRUE to enable, FALSE to disable.
* @center_x: X axis to mirror events across.
* @center_y: Y axis to mirror events across.
* @symmetry_angle: Angle to rotate the symmetry lines
* @symmetry_type: Symmetry type to activate.
* @rot_symmetry_lines: Number of rotational symmetry lines.
*
* Enable/Disable symmetric brush painting across an X axis.
*
*/
void
mypaint_tiled_surface_set_symmetry_state(MyPaintTiledSurface *self, gboolean active,
float center_x, float center_y,
float symmetry_angle,
MyPaintSymmetryType symmetry_type,
int rot_symmetry_lines)
{
mypaint_symmetry_set_pending( // Only write to the pending new state, nothing gets recalculated here
&self->symmetry_data, active, center_x, center_y, symmetry_angle, symmetry_type, rot_symmetry_lines);
}
/**
* mypaint_tile_request_init:
*
* Initialize a request for use with mypaint_tiled_surface_tile_request_start()
* and mypaint_tiled_surface_tile_request_end()
*/
void
mypaint_tile_request_init(MyPaintTileRequest *data, int level,
int tx, int ty, gboolean readonly)
{
data->tx = tx;
data->ty = ty;
data->readonly = readonly;
data->buffer = NULL;
data->context = NULL;
#ifdef _OPENMP
data->thread_id = omp_get_thread_num();
#else
data->thread_id = -1;
#endif
data->mipmap_level = level;
}
// Must be threadsafe
static inline float
calculate_r_sample(float x, float y, float aspect_ratio,
float sn, float cs)
{
const float yyr=(y*cs-x*sn)*aspect_ratio;
const float xxr=y*sn+x*cs;
const float r = (yyr*yyr + xxr*xxr);
return r;
}
static inline float
calculate_rr(int xp, int yp, float x, float y, float aspect_ratio,
float sn, float cs, float one_over_radius2)
{
// code duplication, see brush::count_dabs_to()
const float yy = (yp + 0.5f - y);
const float xx = (xp + 0.5f - x);
const float yyr=(yy*cs-xx*sn)*aspect_ratio;
const float xxr=yy*sn+xx*cs;
const float rr = (yyr*yyr + xxr*xxr) * one_over_radius2;
// rr is in range 0.0..1.0*sqrt(2)
return rr;
}
static inline float
sign_point_in_line( float px, float py, float vx, float vy )
{
return (px - vx) * (-vy) - (vx) * (py - vy);
}
static inline void
closest_point_to_line( float lx, float ly, float px, float py, float *ox, float *oy )
{
const float l2 = lx*lx + ly*ly;
const float ltp_dot = px*lx + py*ly;
const float t = ltp_dot / l2;
*ox = lx * t;
*oy = ly * t;
}
// Must be threadsafe
//
// This works by taking the visibility at the nearest point
// and dividing by 1.0 + delta.
//
// - nearest point: point where the dab has more influence
// - farthest point: point at a fixed distance away from
// the nearest point
// - delta: how much occluded is the farthest point relative
// to the nearest point
static inline float
calculate_rr_antialiased(int xp, int yp, float x, float y, float aspect_ratio,
float sn, float cs, float one_over_radius2,
float r_aa_start)
{
// calculate pixel position and borders in a way
// that the dab's center is always at zero
float pixel_right = x - (float)xp;
float pixel_bottom = y - (float)yp;
float pixel_center_x = pixel_right - 0.5f;
float pixel_center_y = pixel_bottom - 0.5f;
float pixel_left = pixel_right - 1.0f;
float pixel_top = pixel_bottom - 1.0f;
float nearest_x, nearest_y; // nearest to origin, but still inside pixel
float farthest_x, farthest_y; // farthest from origin, but still inside pixel
float r_near, r_far, rr_near, rr_far;
// Dab's center is inside pixel?
if( pixel_left<0 && pixel_right>0 &&
pixel_top<0 && pixel_bottom>0 )
{
nearest_x = 0;
nearest_y = 0;
r_near = rr_near = 0;
}
else
{
closest_point_to_line( cs, sn, pixel_center_x, pixel_center_y, &nearest_x, &nearest_y );
nearest_x = CLAMP( nearest_x, pixel_left, pixel_right );
nearest_y = CLAMP( nearest_y, pixel_top, pixel_bottom );
// XXX: precision of "nearest" values could be improved
// by intersecting the line that goes from nearest_x/Y to 0
// with the pixel's borders here, however the improvements
// would probably not justify the perdormance cost.
r_near = calculate_r_sample( nearest_x, nearest_y, aspect_ratio, sn, cs );
rr_near = r_near * one_over_radius2;
}
// out of dab's reach?
if( rr_near > 1.0f )
return rr_near;
// check on which side of the dab's line is the pixel center
float center_sign = sign_point_in_line( pixel_center_x, pixel_center_y, cs, -sn );
// radius of a circle with area=1
// A = pi * r * r
// r = sqrt(1/pi)
const float rad_area_1 = sqrtf( 1.0f / M_PI );
// center is below dab
if( center_sign < 0 )
{
farthest_x = nearest_x - sn*rad_area_1;
farthest_y = nearest_y + cs*rad_area_1;
}
// above dab
else
{
farthest_x = nearest_x + sn*rad_area_1;
farthest_y = nearest_y - cs*rad_area_1;
}
r_far = calculate_r_sample( farthest_x, farthest_y, aspect_ratio, sn, cs );
rr_far = r_far * one_over_radius2;
// check if we can skip heavier AA
if( r_far < r_aa_start )
return (rr_far+rr_near) * 0.5f;
// calculate AA approximate
float visibilityNear = 1.0f - rr_near;
float delta = rr_far - rr_near;
float delta2 = 1.0f + delta;
visibilityNear /= delta2;
return 1.0f - visibilityNear;
}
static inline float
calculate_opa(float rr, float hardness,
float segment1_offset, float segment1_slope,
float segment2_offset, float segment2_slope) {
const float fac = rr <= hardness ? segment1_slope : segment2_slope;
float opa = rr <= hardness ? segment1_offset : segment2_offset;
opa += rr*fac;
if (rr > 1.0f) {
opa = 0.0f;
}
#ifdef HEAVY_DEBUG
assert(isfinite(opa));
assert(opa >= 0.0f && opa <= 1.0f);
#endif
return opa;
}
// Must be threadsafe
void render_dab_mask (uint16_t * mask,
float x, float y,
float radius,
float hardness,
float softness,
float aspect_ratio, float angle
)
{
hardness = CLAMP(hardness, 0.0, 1.0);
if (aspect_ratio<1.0) aspect_ratio=1.0;
assert(hardness != 0.0); // assured by caller
// For a graphical explanation, see:
// http://wiki.mypaint.info/Development/Documentation/Brushlib
//
// The hardness calculation is explained below:
//
// Dab opacity gradually fades out from the center (rr=0) to
// fringe (rr=1) of the dab. How exactly depends on the hardness.
// We use two linear segments, for which we pre-calculate slope
// and offset here.
//
// opa
// ^
// * .
// | *
// | .
// +-----------*> rr = (distance_from_center/radius)^2
// 0 1
//
float segment1_offset = (1.f)*(1.f-softness);
float segment1_slope = -(1.0f/hardness - 1.0f)*(1.f-softness);
float segment2_offset = hardness/(1.0f-hardness)*(1.f-softness);
float segment2_slope = -hardness/(1.0f-hardness)*(1.f-softness);
// for hardness == 1.0, segment2 will never be used
float angle_rad=angle/360*2*M_PI;
float cs=cos(angle_rad);
float sn=sin(angle_rad);
const float r_fringe = radius + 1.0f; // +1.0 should not be required, only to be sure
int x0 = floor (x - r_fringe);
int y0 = floor (y - r_fringe);
int x1 = floor (x + r_fringe);
int y1 = floor (y + r_fringe);
if (x0 < 0) x0 = 0;
if (y0 < 0) y0 = 0;
if (x1 > MYPAINT_TILE_SIZE-1) x1 = MYPAINT_TILE_SIZE-1;
if (y1 > MYPAINT_TILE_SIZE-1) y1 = MYPAINT_TILE_SIZE-1;
const float one_over_radius2 = 1.0f/(radius*radius);
// Pre-calculate rr and put it in the mask.
// This an optimization that makes use of auto-vectorization
// OPTIMIZE: if using floats for the brush engine, store these directly in the mask
float rr_mask[MYPAINT_TILE_SIZE*MYPAINT_TILE_SIZE+2*MYPAINT_TILE_SIZE];
if (radius < 3.0f)
{
const float aa_border = 1.0f;
float r_aa_start = ((radius>aa_border) ? (radius-aa_border) : 0);
r_aa_start *= r_aa_start / aspect_ratio;
for (int yp = y0; yp <= y1; yp++) {
for (int xp = x0; xp <= x1; xp++) {
const float rr = calculate_rr_antialiased(xp, yp,
x, y, aspect_ratio,
sn, cs, one_over_radius2,
r_aa_start);
rr_mask[(yp*MYPAINT_TILE_SIZE)+xp] = rr;
}
}
}
else
{
for (int yp = y0; yp <= y1; yp++) {
for (int xp = x0; xp <= x1; xp++) {
const float rr = calculate_rr(xp, yp,
x, y, aspect_ratio,
sn, cs, one_over_radius2);
rr_mask[(yp*MYPAINT_TILE_SIZE)+xp] = rr;
}
}
}
// we do run length encoding: if opacity is zero, the next
// value in the mask is the number of pixels that can be skipped.
uint16_t * mask_p = mask;
int skip=0;
skip += y0*MYPAINT_TILE_SIZE;
for (int yp = y0; yp <= y1; yp++) {
skip += x0;
int xp;
for (xp = x0; xp <= x1; xp++) {
const float rr = rr_mask[(yp*MYPAINT_TILE_SIZE)+xp];
const float opa = calculate_opa(rr, hardness,
segment1_offset, segment1_slope,
segment2_offset, segment2_slope);
const uint16_t opa_ = opa * (1<<15);
if (!opa_) {
skip++;
} else {
if (skip) {
*mask_p++ = 0;
*mask_p++ = skip*4;
skip = 0;
}
*mask_p++ = opa_;
}
}
skip += MYPAINT_TILE_SIZE-xp;
}
*mask_p++ = 0;
*mask_p++ = 0;
}
// Must be threadsafe
void
process_op(uint16_t *rgba_p, uint16_t *mask,
int tx, int ty, OperationDataDrawDab *op)
{
// first, we calculate the mask (opacity for each pixel)
render_dab_mask(mask,
op->x - tx*MYPAINT_TILE_SIZE,
op->y - ty*MYPAINT_TILE_SIZE,
op->radius,
op->hardness,
op->softness,
op->aspect_ratio, op->angle
);
// second, we use the mask to stamp a dab for each activated blend mode
if (op->paint < 1.0) {
if (op->normal) {
if (op->color_a == 1.0) {
draw_dab_pixels_BlendMode_Normal(mask, rgba_p,
op->color_r, op->color_g, op->color_b, op->normal*op->opaque*(1 - op->paint)*(1<<15));
} else {
// normal case for brushes that use smudging (eg. watercolor)
draw_dab_pixels_BlendMode_Normal_and_Eraser(mask, rgba_p,
op->color_r, op->color_g, op->color_b, op->color_a*(1<<15),
op->normal*op->opaque*(1 - op->paint)*(1<<15));
}
}
if (op->lock_alpha && op->color_a != 0) {
draw_dab_pixels_BlendMode_LockAlpha(mask, rgba_p,
op->color_r, op->color_g, op->color_b,
op->lock_alpha*op->opaque*(1 - op->colorize)*(1 - op->posterize)*(1 - op->paint)*(1<<15));
}
}
if (op->paint > 0.0) {
if (op->normal) {
if (op->color_a == 1.0) {
draw_dab_pixels_BlendMode_Normal_Paint(mask, rgba_p,
op->color_r, op->color_g, op->color_b, op->normal*op->opaque*op->paint*(1<<15));
} else {
// normal case for brushes that use smudging (eg. watercolor)
draw_dab_pixels_BlendMode_Normal_and_Eraser_Paint(mask, rgba_p,
op->color_r, op->color_g, op->color_b, op->color_a*(1<<15),
op->normal*op->opaque*op->paint*(1<<15));
}
}
if (op->lock_alpha && op->color_a != 0) {
draw_dab_pixels_BlendMode_LockAlpha_Paint(mask, rgba_p,
op->color_r, op->color_g, op->color_b,
op->lock_alpha*op->opaque*(1 - op->colorize)*(1 - op->posterize)*op->paint*(1<<15));
}
}
if (op->colorize) {
draw_dab_pixels_BlendMode_Color(mask, rgba_p,
op->color_r, op->color_g, op->color_b,
op->colorize*op->opaque*(1<<15));
}
if (op->posterize) {
draw_dab_pixels_BlendMode_Posterize(mask, rgba_p,
op->posterize*op->opaque*(1<<15),
op->posterize_num);
}
}
// Must be threadsafe
void
process_tile(MyPaintTiledSurface *self, int tx, int ty)
{
TileIndex tile_index = {tx, ty};
OperationDataDrawDab *op = operation_queue_pop(self->operation_queue, tile_index);
if (!op) {
return;
}
MyPaintTileRequest request_data;
const int mipmap_level = 0;
mypaint_tile_request_init(&request_data, mipmap_level, tx, ty, FALSE);
mypaint_tiled_surface_tile_request_start(self, &request_data);
uint16_t * rgba_p = request_data.buffer;
if (!rgba_p) {
printf("Warning: Unable to get tile!\n");
return;
}
uint16_t mask[MYPAINT_TILE_SIZE*MYPAINT_TILE_SIZE+2*MYPAINT_TILE_SIZE];
while (op) {
process_op(rgba_p, mask, tile_index.x, tile_index.y, op);
free(op);
op = operation_queue_pop(self->operation_queue, tile_index);
}
mypaint_tiled_surface_tile_request_end(self, &request_data);
}
void
update_dirty_bbox(MyPaintRectangle *bbox, OperationDataDrawDab *op)
{
int bb_x, bb_y, bb_w, bb_h;
float r_fringe = op->radius + 1.0f; // +1.0 should not be required, only to be sure
bb_x = floor (op->x - r_fringe);
bb_y = floor (op->y - r_fringe);
bb_w = floor (op->x + r_fringe) - bb_x + 1;
bb_h = floor (op->y + r_fringe) - bb_y + 1;
mypaint_rectangle_expand_to_include_point(bbox, bb_x, bb_y);
mypaint_rectangle_expand_to_include_point(bbox, bb_x+bb_w-1, bb_y+bb_h-1);
}
// returns TRUE if the surface was modified
gboolean draw_dab_internal (MyPaintTiledSurface *self, float x, float y,
float radius,
float color_r, float color_g, float color_b,
float opaque, float hardness, float softness,
float color_a,
float aspect_ratio, float angle,
float lock_alpha,
float colorize,
float posterize,
float posterize_num,
float paint,
int bbox_index
)
{
OperationDataDrawDab op_struct;
OperationDataDrawDab *op = &op_struct;
op->x = x;
op->y = y;
op->radius = radius;
op->aspect_ratio = aspect_ratio;
op->angle = angle;
op->opaque = CLAMP(opaque, 0.0f, 1.0f);
op->hardness = CLAMP(hardness, 0.0f, 1.0f);
op->softness = CLAMP(softness, 0.0f, 1.0f);
op->lock_alpha = CLAMP(lock_alpha, 0.0f, 1.0f);
op->colorize = CLAMP(colorize, 0.0f, 1.0f);
op->posterize = CLAMP(posterize, 0.0f, 1.0f);
op->posterize_num= CLAMP(ROUND(posterize_num * 100.0), 1, 128);
op->paint = CLAMP(paint, 0.0f, 1.0f);
if (op->radius < 0.1f) return FALSE; // don't bother with dabs smaller than 0.1 pixel
if (op->hardness == 0.0f) return FALSE; // infintly small center point, fully transparent outside
if (op->softness == 1.0f) return FALSE;
if (op->opaque == 0.0f) return FALSE;
color_r = CLAMP(color_r, 0.0f, 1.0f);
color_g = CLAMP(color_g, 0.0f, 1.0f);
color_b = CLAMP(color_b, 0.0f, 1.0f);
color_a = CLAMP(color_a, 0.0f, 1.0f);
op->color_r = color_r * (1<<15);
op->color_g = color_g * (1<<15);
op->color_b = color_b * (1<<15);
op->color_a = color_a;
// blending mode preparation
op->normal = 1.0f;
op->normal *= 1.0f-op->lock_alpha;
op->normal *= 1.0f-op->colorize;
op->normal *= 1.0f-op->posterize;
if (op->aspect_ratio<1.0f) op->aspect_ratio=1.0f;
// Determine the tiles influenced by operation, and queue it for processing for each tile
float r_fringe = radius + 1.0f; // +1.0 should not be required, only to be sure
int tx1 = floor(floor(x - r_fringe) / MYPAINT_TILE_SIZE);
int tx2 = floor(floor(x + r_fringe) / MYPAINT_TILE_SIZE);
int ty1 = floor(floor(y - r_fringe) / MYPAINT_TILE_SIZE);
int ty2 = floor(floor(y + r_fringe) / MYPAINT_TILE_SIZE);
for (int ty = ty1; ty <= ty2; ty++) {
for (int tx = tx1; tx <= tx2; tx++) {
const TileIndex tile_index = {tx, ty};
OperationDataDrawDab *op_copy = (OperationDataDrawDab *)malloc(sizeof(OperationDataDrawDab));
*op_copy = *op;
operation_queue_add(self->operation_queue, tile_index, op_copy);
}
}
update_dirty_bbox(&self->bboxes[bbox_index], op);
return TRUE;
}
// returns TRUE if the surface was modified
int draw_dab (MyPaintSurface *surface, float x, float y,
float radius,
float color_r, float color_g, float color_b,
float opaque, float hardness, float softness,
float color_a,
float aspect_ratio, float angle,
float lock_alpha,
float colorize,
float posterize,
float posterize_num,
float paint)
{
MyPaintTiledSurface* self = (MyPaintTiledSurface*)surface;
// These calls are repeated enough to warrant a local macro, for both readability and correctness.
#define DDI(x, y, angle, bb_idx) (draw_dab_internal(\
self, (x), (y), radius, color_r, color_g, color_b, opaque, \
hardness, softness, color_a, aspect_ratio, (angle), \
lock_alpha, colorize, posterize, posterize_num, paint, (bb_idx)))
// Normal pass
gboolean surface_modified = DDI(x, y, angle, 0);
int num_bboxes_used = surface_modified ? 1 : 0;
// Symmetry pass
// OPTIMIZATION: skip the symmetry pass if surface was not modified by the initial dab;
// at current if the initial dab does not modify the surface, none of the symmetry dabs
// will either. If/when selection masks are added, this optimization _must_ be removed,
// and `surface_modified` must be or'ed with the result of each call to draw_dab_internal.
MyPaintSymmetryData *symm_data = &self->symmetry_data;
if (surface_modified && symm_data->active && symm_data->num_symmetry_matrices) {
const MyPaintSymmetryState symm = symm_data->state_current;
const int num_bboxes = self->num_bboxes;
const float rot_angle = 360.0 / symm.num_lines;
const MyPaintTransform* const matrices = symm_data->symmetry_matrices;
float x_out, y_out;
switch (symm.type) {
case MYPAINT_SYMMETRY_TYPE_VERTICAL: {
mypaint_transform_point(&matrices[0], x, y, &x_out, &y_out);
DDI(x_out, y_out, -2.0 * (90 + symm.angle) - angle, 1);
num_bboxes_used = 2;
break;
}
case MYPAINT_SYMMETRY_TYPE_HORIZONTAL: {
mypaint_transform_point(&matrices[0], x, y, &x_out, &y_out);
DDI(x_out, y_out, -2.0 * symm.angle - angle, 1);
num_bboxes_used = 2;
break;
}
case MYPAINT_SYMMETRY_TYPE_VERTHORZ: {
// Reflect across horizontal line
mypaint_transform_point(&matrices[0], x, y, &x_out, &y_out);
DDI(x_out, y_out, -2.0 * symm.angle - angle, 1);
// Then across the vertical line (diagonal)
mypaint_transform_point(&matrices[1], x, y, &x_out, &y_out);
DDI(x_out, y_out, angle, 2);
// Then back across the horizontal line
mypaint_transform_point(&matrices[2], x, y, &x_out, &y_out);
DDI(x_out, y_out, -2.0 * symm.angle - angle, 3);
num_bboxes_used = 4;
break;
}
case MYPAINT_SYMMETRY_TYPE_SNOWFLAKE: {
// These dabs will occupy the bboxes after the last bbox used by the rotational dabs.
const int offset = MIN(num_bboxes / 2, symm.num_lines);
const float dabs_per_bbox = MAX(1, (float)symm.num_lines * 2.0 / num_bboxes);
const int base_idx = symm.num_lines - 1;
const float base_angle = -2 * symm.angle - angle;
// draw snowflake dabs for _all_ symmetry lines as we need to reflect the initial dab.
for (int dab_count = 0; dab_count < symm.num_lines; dab_count++) {
// If the number of bboxes cannot fit all snowflake dabs, use half for the rotational dabs
// and the other half for the reflected dabs. This is not always optimal, but seldom bad.
const int bbox_idx = offset + MIN(roundf(dab_count / dabs_per_bbox), num_bboxes - 1);
mypaint_transform_point(&matrices[base_idx + dab_count], x, y, &x_out, &y_out);
DDI(x_out, y_out, base_angle - dab_count * rot_angle, bbox_idx);
}
num_bboxes_used = MIN(self->num_bboxes, symm.num_lines * 2);
// fall through to rotational to finish the process
}
case MYPAINT_SYMMETRY_TYPE_ROTATIONAL: {
// Set the dab bbox distribution factor based on whether the pass is only
// rotational, or following a snowflake pass. For the latter, we compress
// the available range (unimportant if there are enough bboxes to go around).
const gboolean snowflake = symm.type == MYPAINT_SYMMETRY_TYPE_SNOWFLAKE;
float dabs_per_bbox = MAX(1, (float)(symm.num_lines * (snowflake ? 2 : 1)) / num_bboxes);
// draw self->rot_symmetry_lines - 1 rotational dabs since initial pass handles the first dab
for (int dab_count = 1; dab_count < symm.num_lines; dab_count++) {
const int bbox_index = MIN(roundf(dab_count / dabs_per_bbox), num_bboxes - 1);
mypaint_transform_point(&matrices[dab_count - 1], x, y, &x_out, &y_out);
DDI(x_out, y_out, angle - dab_count * rot_angle, bbox_index);
}
// Use existing (larger) number of bboxes if it was set (in a snowflake pass)
num_bboxes_used = MIN(self->num_bboxes, MAX(symm.num_lines, num_bboxes_used));
break;
}
default:
fprintf(stderr, "Warning: Unhandled symmetry type: %d\n", symm.type);
break;
}
}
self->num_bboxes_dirtied = MIN(self->num_bboxes, num_bboxes_used);
return surface_modified;
#undef DDI
}
void get_color (MyPaintSurface *surface, float x, float y,
float radius,
float * color_r, float * color_g, float * color_b, float * color_a,
float paint
)
{
MyPaintTiledSurface *self = (MyPaintTiledSurface *)surface;
if (radius < 1.0f) radius = 1.0f;
const float hardness = 0.5f;
const float softness = 0.5f;
const float aspect_ratio = 1.0f;
const float angle = 0.0f;
float sum_weight, sum_r, sum_g, sum_b, sum_a;
sum_weight = sum_r = sum_g = sum_b = sum_a = 0.0f;
// in case we return with an error
*color_r = 0.0f;
*color_g = 1.0f;
*color_b = 0.0f;
// WARNING: some code duplication with draw_dab
float r_fringe = radius + 1.0f; // +1 should not be required, only to be sure
int tx1 = floor(floor(x - r_fringe) / MYPAINT_TILE_SIZE);
int tx2 = floor(floor(x + r_fringe) / MYPAINT_TILE_SIZE);
int ty1 = floor(floor(y - r_fringe) / MYPAINT_TILE_SIZE);
int ty2 = floor(floor(y + r_fringe) / MYPAINT_TILE_SIZE);
#ifdef _OPENMP
int tiles_n = (tx2 - tx1) * (ty2 - ty1);
#endif
// Calculate the `guaranteed sample` interval and
// the percentage of pixels to sample for the dab.
// The basic idea is to have larger intervals and
// lower percentages for really large dabs, to
// avoid accumulated rounding errors and heavier
// calculations.
//
// The values are set so that the number of pixels
// sampled is _bounded_ linearly by the radius.
//
// The constant factor 7 is chosen through manual
// evaluation of results and gives us a total sample
// rate bounded by '1/(r * 3.5)'
// Other models may have better properties, some
// more thinking needed here.
//
// For really small radii we'll sample every pixel
// in the dab to avoid biasing.
const int sample_interval = radius <= 2.0f ? 1 : (int)(radius * 7);
const float random_sample_rate = 1.0f / (7 * radius);
#pragma omp parallel for schedule(static) if(self->threadsafe_tile_requests && tiles_n > 3)
for (int ty = ty1; ty <= ty2; ty++) {
for (int tx = tx1; tx <= tx2; tx++) {
// Flush queued draw_dab operations
process_tile(self, tx, ty);
MyPaintTileRequest request_data;
const int mipmap_level = 0;
mypaint_tile_request_init(&request_data, mipmap_level, tx, ty, TRUE);
mypaint_tiled_surface_tile_request_start(self, &request_data);
uint16_t * rgba_p = request_data.buffer;
if (!rgba_p) {
printf("Warning: Unable to get tile!\n");
break;
}
// first, we calculate the mask (opacity for each pixel)
uint16_t mask[MYPAINT_TILE_SIZE*MYPAINT_TILE_SIZE+2*MYPAINT_TILE_SIZE];
render_dab_mask(mask,
x - tx*MYPAINT_TILE_SIZE,
y - ty*MYPAINT_TILE_SIZE,
radius,
hardness,
softness,
aspect_ratio, angle
);
// TODO: try atomic operations instead
#pragma omp critical
{
get_color_pixels_accumulate (
mask, rgba_p, &sum_weight, &sum_r, &sum_g, &sum_b, &sum_a, paint,
sample_interval, random_sample_rate);
}
mypaint_tiled_surface_tile_request_end(self, &request_data);
}
}
assert(sum_weight > 0.0f);
sum_a /= sum_weight;
// For legacy sampling, we need to divide
// by the total after the accumulation.
if (paint < 0.0) {
sum_r /= sum_weight;
sum_g /= sum_weight;
sum_b /= sum_weight;
}
*color_a = CLAMP(sum_a, 0.0f, 1.0f);
if (sum_a > 0.0f) {
// Straighten the color channels if using legacy sampling.
// Clamp to guard against rounding errors.
const float demul = paint < 0.0 ? sum_a : 1.0;
*color_r = CLAMP(sum_r / demul, 0.0f, 1.0f);
*color_g = CLAMP(sum_g / demul, 0.0f, 1.0f);
*color_b = CLAMP(sum_b / demul, 0.0f, 1.0f);
} else {
// it is all transparent, so don't care about the colors
// (let's make them ugly so bugs will be visible)
*color_r = 0.0f;
*color_g = 1.0f;
*color_b = 0.0f;
}
}
/**
* mypaint_tiled_surface_init: (skip)
*
* Initialize the surface, passing in implementations of the tile backend.
* Note: Only intended to be called from subclasses of #MyPaintTiledSurface
**/
void
mypaint_tiled_surface_init(MyPaintTiledSurface *self,
MyPaintTileRequestStartFunction tile_request_start,
MyPaintTileRequestEndFunction tile_request_end)
{
mypaint_surface_init(&self->parent);
self->parent.draw_dab = draw_dab;
self->parent.get_color = get_color;
self->parent.begin_atomic = begin_atomic_default;
self->parent.end_atomic = end_atomic_default;
self->tile_request_end = tile_request_end;
self->tile_request_start = tile_request_start;
self->tile_size = MYPAINT_TILE_SIZE;
self->threadsafe_tile_requests = FALSE;
self->num_bboxes = NUM_BBOXES_DEFAULT;
self->bboxes = self->default_bboxes;
memset(self->bboxes, 0, sizeof(MyPaintRectangle) * NUM_BBOXES_DEFAULT);
self->symmetry_data = mypaint_default_symmetry_data();
self->operation_queue = operation_queue_new();
}
/**
* mypaint_tiled_surface_destroy: (skip)
*
* Deallocate resources set up by mypaint_tiled_surface_init()
* Does not free the #MyPaintTiledSurface itself.
* Note: Only intended to be called from subclasses of #MyPaintTiledSurface
*/
void
mypaint_tiled_surface_destroy(MyPaintTiledSurface *self)
{
operation_queue_free(self->operation_queue);
if (self->bboxes != self->default_bboxes) {
free(self->bboxes);
}
mypaint_symmetry_data_destroy(&self->symmetry_data);
}