Skip to content

Latest commit

 

History

History
72 lines (56 loc) · 2.13 KB

snippets.md

File metadata and controls

72 lines (56 loc) · 2.13 KB

Code Snippetss

  • 动态创建类的函数
def set_class_func(CLASS, FUNC):
    try:
        funclist = [i for i in dir(FUNC) if callable(getattr(FUNC,i)) and not i.startswith('_') ]
        for func in funclist:
            setattr(CLASS,str(func),classmethod(func))    
    except Exception as e:
        import sys
        print("Error When Create Class Method From {} TO {}".format(CLASS,FUNC))
        sys.exit(1)
  • 文件夹路径
import os
print(os.path.dirname(os.path.abspath("__file__")))
  • print without new line
print('Loading Data...',end='')
print('Done)
LinearSVC(probability=True) # 提示没有该属性
#Similar to SVC with parameter kernel=’linear’, but implemented in terms of liblinear rather than libsvm, so it has more flexibility in  the choice of penalties and loss functions and should scale better to large numbers of samples.
# http://scikit-learn.org/stable/modules/svm.html
SVC( kernel="linear", probability=True)
    class A:
        def __init__(self,l):
            self.l = l

        def get_params(self, deep = False):
            return {'l':self.l}

  • 生成requirements.txt
pipreqs .
 from sklearn.calibration import CalibratedClassifierCV
 svm = LinearSVC()
 clf = CalibratedClassifierCV(svm) 
 clf.fit(X_train, y_train)
 y_proba = clf.predict_proba(X_test)

  • BaggingClassifier is Roughly Equivalent to RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
BaggingClassifier((DecisionTreeClassifier, splitter="random",max_leaf_nodes=16),
                n_estimators=500, max_samples=1.0, bootstrap=True, n_jobs=-1)