-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeautiful-arrangement.cpp
61 lines (59 loc) · 1.57 KB
/
beautiful-arrangement.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
//
// Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:
//
// The number at the ith position is divisible by i.
// i is divisible by the number at the ith position.
//
//
//
//
// Now given N, how many beautiful arrangements can you construct?
//
//
// Example 1:
//
// Input: 2
// Output: 2
// Explanation:
// The first beautiful arrangement is [1, 2]:
// Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).
// Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).
// The second beautiful arrangement is [2, 1]:
// Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).
// Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
//
//
//
// Note:
//
// N is a positive integer and will not exceed 15.
//
//
class Solution {
int wyn=0,gn;
public:
int countArrangement(int N) {
gn=N;
bool bylo[gn+1];
for (int i=1; i<=gn; i++) {
bylo[i]=0;
}
check(1,bylo);
return wyn;
}
void check(int pos, bool bylo[]) {
for (int i=1; i<=gn; i++) {
if ((pos%i==0 || i%pos==0) && !bylo[i]) {
bylo[i]=1;
if (pos<gn) {
check(pos+1,bylo);
}
else {
wyn++;
}
bylo[i]=0;
}
}
return;
}
};