Skip to content

Latest commit

 

History

History
149 lines (109 loc) · 5.96 KB

README.md

File metadata and controls

149 lines (109 loc) · 5.96 KB

CRAN status codecov.io Build Status

Are you using the tidyverse with an OMOP Common Data Model?

Interact with your CDM in a pipe-friendly way with CDMConnector.

  • Quickly connect to your CDM and start exploring.
  • Build data analysis pipelines using familiar dplyr verbs.
  • Easily extract subsets of CDM data from a database.

Overview

CDMConnector introduces a single R object that represents an OMOP CDM relational database inspired by the dm, DatabaseConnector, and Andromeda packages. The cdm object can be used in dplyr style data analysis pipelines and facilitates interactive data exploration. cdm objects encapsulate references to OMOP CDM tables in a remote RDBMS as well as metadata necessary for interacting with a CDM.

OMOP CDM v5.4

Features

CDMConnector is meant to be the entry point for composable tidyverse style data analysis operations on an OMOP CDM. A cdm_reference object behaves like a named list of tables.

  • Quickly create a list of references to a subset of CDM tables
  • Store connection information for later use inside functions
  • Use any DBI driver back-end with the OMOP CDM

See Getting started for more details.

Installation

CDMConnector can be installed from CRAN:

install.packages("CDMConnector")

The development version can be installed from GitHub:

# install.packages("devtools")
devtools::install_github("darwin-eu/CDMConnector")

Usage

Create a cdm_reference object from any DBI connection. Use the `cdm_schema argument to point to a particular schema in your database.

library(CDMConnector)

con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir())
cdm <- cdm_from_con(con, cdm_schema = "main")
cdm

## # OMOP CDM reference (tbl_duckdb_connection)
## 
## Tables: person, observation_period, visit_occurrence, visit_detail, condition_occurrence, drug_exposure, procedure_occurrence, measurement, observation, death, location, care_site, provider, drug_era, dose_era, condition_era, cdm_source, concept, vocabulary, concept_relationship, concept_synonym, concept_ancestor, drug_strength

A cdm_reference is a named list of table references:

library(dplyr, warn.conflicts = FALSE)
names(cdm)

##  [1] "person"               "observation_period"   "visit_occurrence"    
##  [4] "visit_detail"         "condition_occurrence" "drug_exposure"       
##  [7] "procedure_occurrence" "measurement"          "observation"         
## [10] "death"                "location"             "care_site"           
## [13] "provider"             "drug_era"             "dose_era"            
## [16] "condition_era"        "cdm_source"           "concept"             
## [19] "vocabulary"           "concept_relationship" "concept_synonym"     
## [22] "concept_ancestor"     "drug_strength"

Use dplyr verbs with the table references.

tally(cdm$person)

## # Source:   SQL [1 x 1]
## # Database: DuckDB 0.6.1 [root@Darwin 21.6.0:R 4.2.2//var/folders/xx/01v98b6546ldnm1rg1_bvk000000gn/T//RtmpcuCHv2/uudgqiyb/cdm.duckdb]
##       n
##   <dbl>
## 1  2694

Compose operations with the pipe.

cdm$condition_era %>%
  left_join(cdm$concept, by = c("condition_concept_id" = "concept_id")) %>% 
  count(top_conditions = concept_name, sort = TRUE)

## # Source:     SQL [?? x 2]
## # Database:   DuckDB 0.6.1 [root@Darwin 21.6.0:R 4.2.2//var/folders/xx/01v98b6546ldnm1rg1_bvk000000gn/T//RtmpcuCHv2/uudgqiyb/cdm.duckdb]
## # Ordered by: desc(n)
##    top_conditions                               n
##    <chr>                                    <dbl>
##  1 Viral sinusitis                          17268
##  2 Acute viral pharyngitis                  10217
##  3 Acute bronchitis                          8184
##  4 Otitis media                              3561
##  5 Osteoarthritis                            2694
##  6 Streptococcal sore throat                 2656
##  7 Sprain of ankle                           1915
##  8 Concussion with no loss of consciousness  1013
##  9 Sinusitis                                 1001
## 10 Acute bacterial sinusitis                  939
## # … with more rows

Run a simple quality check on a cdm.

cdm <- cdm_from_con(con, cdm_tables = c("person", "observation_period"))
validate_cdm(cdm)

## ── CDM v5.3 validation (checking 2 tables) ─────────────────────────────────────
## ✔ cdm table names
## ✔ all row counts > 0

DBI Drivers

CDMConnector is tested using the following DBI driver backends:

Getting help

If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub.


License: Apache 2.0