-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransformer_decoder_model_eval.py
51 lines (48 loc) · 2.43 KB
/
transformer_decoder_model_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from transformer_decoder_model import TransformerModel,NetworkInterface,\
FramedRAMDataStorage,FramedDataProvider,CustomPitchShifter
import os
import numpy as np
import matplotlib.pyplot as plt
from librosa import midi_to_note
def plot_weight(model,tokens):
result,attn=model.inference(tokens)
result[:,1]=0.0
print('PD:',np.argmax(result,axis=1))
print('GT:',tokens)
print('GT:',' '.join(midi_to_note(x-2) if x>=2 else ['<n>','<s>'][x] for x in tokens))
print('PB:',np.max(result,axis=1))
tokens_one_hot=np.eye(result.shape[1])[tokens]
fig, ax = plt.subplots(nrows=2, ncols=1, sharex='all')
ax[0].imshow(result.T, interpolation='nearest', aspect='auto')
ax[0].invert_yaxis()
ax[1].imshow(tokens_one_hot.T, interpolation='nearest', aspect='auto')
ax[1].invert_yaxis()
plt.show()
#plt.imshow(recover_attention_matrix(attn,TOKENS_PER_BAR).T)
#plt.show()
if __name__ == '__main__':
model=NetworkInterface(TransformerModel(
n_vocabulary=128+2,emb_size=256,dim_feed_forward=1024,n_head=4,n_layers=3,dropout=0.5),
'transformer_chpop_v1.0_relative_pe_3_layers_early_stopping.best',load_checkpoint=False)
plot_weight(model,np.array([71,1,73,1,74,1,69,1,67,1,1,1,66,1,1,1,
71,1,73,1,74,1,69,1,67,1,1,1,66,1,1,1]
))
plot_weight(model,np.array([i+12 if i>1 else i for i in [57,1,59,1,57,1,55,1,54,1,52,1,50,1,1,1,
55,1,57,1,55,1,54,1,52,1,50,1,49,1,1,1]]
))
plot_weight(model,np.array([62,1,64,1,66,1,67,1,69,1,66,1,62,1,57,1,
64,1,66,1,68,1,69,1,71,1,68,1,64,1,59,1]
))
exit(0)
dataset_name='nottingham_note_chords'
storage_x=FramedRAMDataStorage(os.path.join(os.getcwd(),'data/%s'%dataset_name))
storage_x.load()
f=open('./data/%s.split.txt'%dataset_name,'r')
tokens=[line.strip().split(',') for line in f.readlines() if line.strip()!='']
test_indices=[int(id) for id in tokens[2]]
print('Using %d samples to test'%len(test_indices))
test_provider=FramedDataProvider(train_sample_length=-1,shift_low=0,shift_high=0,
num_workers=0,allow_truncate=True,average_samples_per_song=1)
test_provider.link(storage_x,CustomPitchShifter(),subrange=test_indices)
# for i in range(test_provider.get_length()):
# plot_weight(model,test_provider.get_sample(i)[0])