-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdoc2sents.py
253 lines (212 loc) · 7.54 KB
/
doc2sents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# coding: utf-8
import argparse
import logging
import os
import string
import subprocess
import sys
import typing
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
from statistics import mean, median
from tqdm import tqdm
SENT_SEG = [
"sbd",
"wtd",
"none",
]
_LOGGER = logging.getLogger("doc2sents")
def import_string(import_name: str, silent: bool = False) -> typing.Any:
"""
Imports an object based on a string.
An import path can
be specified either in dotted notation (``xml.sax.saxutils.escape``)
or with a colon as object delimiter (``xml.sax.saxutils:escape``).
If `silent` is True the return value will be `None` if the import fails.
:param import_name: the dotted name for the object to import.
:param silent: if set to `True` import errors are ignored and
`None` is returned instead.
:return: imported object
"""
import_name = import_name.replace(":", ".")
try:
try:
__import__(import_name)
except ImportError:
if "." not in import_name:
raise
else:
return sys.modules[import_name]
module_name, obj_name = import_name.rsplit(".", 1)
module = __import__(module_name, globals(), locals(), [obj_name])
try:
return getattr(module, obj_name)
except AttributeError as e:
raise ImportError(e) from None
except ImportError as e:
if not silent:
raise ImportStringError(import_name, e).with_traceback(
sys.exc_info()[2]
) from None
return None
def format_as_table(*cols: tuple[str, list[str]]) -> str:
"""Taken from lightening"""
n_rows = len(cols[0][1])
n_cols = 1 + len(cols)
# Get formatting width of each column
col_widths = []
for c in cols:
col_width = max(len(str(a)) for a in c[1]) if n_rows else 0
col_width = max(col_width, len(c[0])) # minimum length is header length
col_widths.append(col_width)
# Formatting
s = "{:<{}}"
total_width = sum(col_widths) + 3 * n_cols
header = [s.format(c[0], w) for c, w in zip(cols, col_widths)]
# Summary = header + divider + Rest of table
summary = " | ".join(header) + "\n" + "-" * total_width
for i in range(n_rows):
line = []
for c, w in zip(cols, col_widths):
line.append(s.format(str(c[1][i]), w))
summary += "\n" + " | ".join(line)
summary += "\n" + "-" * total_width
return summary
def get_stats(sentences):
num_words = [len(sent.split(" ")) for sent in sentences]
num_chars = [len(sent) for sent in sentences]
data = [num_chars, num_words]
cols = (
("", [" chars", " words"]),
("mean", [round(mean(d)) for d in data]),
("median", [median(d) for d in data]),
("min", [min(d) for d in data]),
("max", [max(d) for d in data]),
)
return format_as_table(*cols)
def main():
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser(
prog="doc2sents", description="Convert a document to a list of sentences"
)
parser.add_argument("doc", type=Path, help="Source document")
parser.add_argument(
"-o", "--output", type=Path, required=False, help="Output plain text file"
)
parser.add_argument(
"-l",
"--lang",
type=str,
required=False,
help="source document language for sentence segmentation",
)
parser.add_argument(
"-c",
"--cleaner",
type=str,
required=False,
help="dotted path to a python callable to clean input lines",
)
parser.add_argument(
"-s",
"--seg",
type=str,
choices=SENT_SEG,
default="none",
help="package used for segmenting input text to sentences",
)
parser.add_argument(
"--wtp-model", type=str, required=False, help="WTP model name or path"
)
parser.add_argument(
"--drop-single-word", action="store_true", required=False, help="drop single word sentences"
)
parser.add_argument(
"--drop-punc", action="store_true", required=False, help="drop punctuation only lines"
)
parser.add_argument(
"--stats", action="store_true", required=False, help="show statistics about character and word counts"
)
args = parser.parse_args()
if not os.path.exists(args.doc):
_LOGGER.error(f"File not found: ` {args.doc}`")
sys.exit(-1)
_LOGGER.info(f"Using document: {args.doc}")
cleaner_func = lambda s: s
if args.cleaner:
_LOGGER.info(f"importing cleaner callable: {args.cleaner}")
try:
cleaner_func = import_string(args.cleaner)
except:
_LOGGER.error(
f"Failed to import cleaner function: {args.cleaner}", exc_info=True
)
sys.exit(-1)
_LOGGER.info("converting document to plain text using pandoc")
try:
stdout = subprocess.check_output(
["pandoc", "--to", "plain", "--wrap", "none", args.doc]
)
plain_text = stdout.decode("utf-8")
except subprocess.CalledProcessError as e:
_LOGGER.error(
f"Failed to convert document to plain text. Pandoc exited with a non-zero exit code: {e.returncode}"
)
_LOGGER.error(e.output)
sys.exit(-1)
_LOGGER.info("cleaning and stripping blank lines")
lines = [line.strip() for line in plain_text.splitlines()]
lines = {cleaner_func(line): None for line in lines}
lines.pop("", None)
lines = list(lines)
_LOGGER.info("segmenting lines to sentences")
sentences = lines
if args.seg == "sbd":
_LOGGER.info("using `pysbd` segmenter")
from pysbd import Segmenter
sentences = []
sent_segmenter = Segmenter(language=args.lang)
with ProcessPoolExecutor(max_workers=os.cpu_count()) as executor:
iterator = executor.map(
sent_segmenter.segment, lines, chunksize=len(lines) // os.cpu_count()
)
for sents in tqdm(iterator, total=len(lines)):
sentences.extend(sents)
elif args.seg == "wtp":
_LOGGER.info("using `wtp` segmenter")
if not args.wtp_model:
_LOGGER.error("`--wtp-model is required if using WTP segmenter")
sys.exit(-1)
from wtpsplit import WtP
wtp = WtP(args.wtp_model)
sentences = []
for line in tqdm(lines):
sentences.extend(wtp.split(line, lang_code=args.lang))
sentences = list({sent.strip(): None for sent in sentences})
if args.drop_single_word:
sentences = [
sent
for sent in sentences
if len(sent.split(" ")) > 1
]
if args.drop_punc:
punctuation = set(string.punctuation)
sentences = [
sent
for sent in sentences
if set(sent).difference(punctuation)
]
sentences = {sent.strip(): None for sent in sentences}
sentences.pop("", None)
sentences = list(sentences)
if not args.output:
doc_path = Path(args.doc)
args.output = os.fspath(doc_path.parent.joinpath(f"{doc_path.stem}.sents"))
_LOGGER.info(f"Writing sentences to output file: {args.output}")
Path(args.output).write_text("\n".join(sentences), encoding="utf-8", newline="\n")
_LOGGER.info(f"Wrote {len(sentences)} sentences to file `{args.output}`")
if args.stats:
stats = get_stats(sentences)
_LOGGER.info(f"Stats:\n{stats}")
if __name__ == "__main__":
main()