-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathirm.py
299 lines (256 loc) · 14.1 KB
/
irm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import random
import time
import warnings
import argparse
import shutil
import os.path as osp
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.autograd as autograd
import utils
from tllib.utils.data import ForeverDataIterator
from tllib.utils.metric import accuracy
from tllib.utils.meter import AverageMeter, ProgressMeter
from tllib.utils.logger import CompleteLogger
from tllib.utils.analysis import tsne, a_distance
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class InvariancePenaltyLoss(nn.Module):
r"""Invariance Penalty Loss from `Invariant Risk Minimization <https://arxiv.org/pdf/1907.02893.pdf>`_.
We adopt implementation from `DomainBed <https://github.com/facebookresearch/DomainBed>`_. Given classifier
output :math:`y` and ground truth :math:`labels`, we split :math:`y` into two parts :math:`y_1, y_2`, corresponding
labels are :math:`labels_1, labels_2`. Next we calculate cross entropy loss with respect to a dummy classifier
:math:`w`, resulting in :math:`grad_1, grad_2` . Invariance penalty is then :math:`grad_1*grad_2`.
Inputs:
- y: predictions from model
- labels: ground truth
Shape:
- y: :math:`(N, C)` where C means the number of classes.
- labels: :math:`(N, )` where N mean mini-batch size
"""
def __init__(self):
super(InvariancePenaltyLoss, self).__init__()
self.scale = torch.tensor(1.).requires_grad_()
def forward(self, y: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
loss_1 = F.cross_entropy(y[::2] * self.scale, labels[::2])
loss_2 = F.cross_entropy(y[1::2] * self.scale, labels[1::2])
grad_1 = autograd.grad(loss_1, [self.scale], create_graph=True)[0]
grad_2 = autograd.grad(loss_2, [self.scale], create_graph=True)[0]
penalty = torch.sum(grad_1 * grad_2)
return penalty
def main(args: argparse.Namespace):
logger = CompleteLogger(args.log, args.phase)
print(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
train_transform = utils.get_train_transform(args.train_resizing, random_horizontal_flip=True,
random_color_jitter=True, random_gray_scale=True)
val_transform = utils.get_val_transform(args.val_resizing)
print("train_transform: ", train_transform)
print("val_transform: ", val_transform)
train_dataset, num_classes = utils.get_dataset(dataset_name=args.data, root=args.root, task_list=args.sources,
split='train', download=True, transform=train_transform,
seed=args.seed)
sampler = utils.RandomDomainSampler(train_dataset, args.batch_size, n_domains_per_batch=args.n_domains_per_batch)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
sampler=sampler, drop_last=True)
val_dataset, _ = utils.get_dataset(dataset_name=args.data, root=args.root, task_list=args.sources, split='val',
download=True, transform=val_transform, seed=args.seed)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
test_dataset, _ = utils.get_dataset(dataset_name=args.data, root=args.root, task_list=args.targets, split='test',
download=True, transform=val_transform, seed=args.seed)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
print("train_dataset_size: ", len(train_dataset))
print('val_dataset_size: ', len(val_dataset))
print("test_dataset_size: ", len(test_dataset))
train_iter = ForeverDataIterator(train_loader)
# create model
print("=> using pre-trained model '{}'".format(args.arch))
backbone = utils.get_model(args.arch)
pool_layer = nn.Identity() if args.no_pool else None
classifier = utils.ImageClassifier(backbone, num_classes, freeze_bn=args.freeze_bn, dropout_p=args.dropout_p,
finetune=args.finetune, pool_layer=pool_layer).to(device)
# define optimizer and lr scheduler
optimizer = SGD(classifier.get_parameters(base_lr=args.lr), args.lr, momentum=args.momentum, weight_decay=args.wd,
nesterov=True)
lr_scheduler = CosineAnnealingLR(optimizer, args.epochs * args.iters_per_epoch)
# define loss function
invariance_penalty_loss = InvariancePenaltyLoss().to(device)
# for simplicity
assert args.anneal_iters % args.iters_per_epoch == 0
# resume from the best checkpoint
if args.phase != 'train':
checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu')
classifier.load_state_dict(checkpoint)
# analysis the model
if args.phase == 'analysis':
# extract features from both domains
feature_extractor = nn.Sequential(classifier.backbone, classifier.pool_layer, classifier.bottleneck).to(device)
source_feature = utils.collect_feature(val_loader, feature_extractor, device, max_num_features=100)
target_feature = utils.collect_feature(test_loader, feature_extractor, device, max_num_features=100)
print(len(source_feature), len(target_feature))
# plot t-SNE
tSNE_filename = osp.join(logger.visualize_directory, 'TSNE.png')
tsne.visualize(source_feature, target_feature, tSNE_filename)
print("Saving t-SNE to", tSNE_filename)
# calculate A-distance, which is a measure for distribution discrepancy
A_distance = a_distance.calculate(source_feature, target_feature, device)
print("A-distance =", A_distance)
return
if args.phase == 'test':
acc1 = utils.validate(test_loader, classifier, args, device)
print(acc1)
return
# start training
best_val_acc1 = 0.
best_test_acc1 = 0.
for epoch in range(args.epochs):
if epoch * args.iters_per_epoch == args.anneal_iters:
# reset optimizer to avoid sharp jump in gradient magnitudes
optimizer = SGD(classifier.get_parameters(base_lr=args.lr), args.lr, momentum=args.momentum,
weight_decay=args.wd, nesterov=True)
lr_scheduler = CosineAnnealingLR(optimizer, args.epochs * args.iters_per_epoch - args.anneal_iters)
print(lr_scheduler.get_lr())
# train for one epoch
train(train_iter, classifier, optimizer, lr_scheduler, invariance_penalty_loss, args.n_domains_per_batch, epoch,
args)
# evaluate on validation set
print("Evaluate on validation set...")
acc1 = utils.validate(val_loader, classifier, args, device)
# remember best acc@1 and save checkpoint
torch.save(classifier.state_dict(), logger.get_checkpoint_path('latest'))
if acc1 > best_val_acc1:
shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best'))
best_val_acc1 = max(acc1, best_val_acc1)
# evaluate on test set
print("Evaluate on test set...")
best_test_acc1 = max(best_test_acc1, utils.validate(test_loader, classifier, args, device))
# evaluate on test set
classifier.load_state_dict(torch.load(logger.get_checkpoint_path('best')))
acc1 = utils.validate(test_loader, classifier, args, device)
print("test acc on test set = {}".format(acc1))
print("oracle acc on test set = {}".format(best_test_acc1))
logger.close()
def train(train_iter: ForeverDataIterator, model, optimizer, lr_scheduler: CosineAnnealingLR,
invariance_penalty_loss: InvariancePenaltyLoss, n_domains_per_batch: int, epoch: int,
args: argparse.Namespace):
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
losses = AverageMeter('Loss', ':3.2f')
losses_ce = AverageMeter('CELoss', ':3.2f')
losses_penalty = AverageMeter('Penalty Loss', ':3.2f')
cls_accs = AverageMeter('Cls Acc', ':3.1f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses, losses_ce, losses_penalty, cls_accs],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i in range(args.iters_per_epoch):
x_all, labels_all, _ = next(train_iter)
x_all = x_all.to(device)
labels_all = labels_all.to(device)
# measure data loading time
data_time.update(time.time() - end)
# compute output
y_all, _ = model(x_all)
# cls loss
loss_ce = F.cross_entropy(y_all, labels_all)
# penalty loss
loss_penalty = 0
for y_per_domain, labels_per_domain in zip(y_all.chunk(n_domains_per_batch, dim=0),
labels_all.chunk(n_domains_per_batch, dim=0)):
# normalize loss by domain num
loss_penalty += invariance_penalty_loss(y_per_domain, labels_per_domain) / n_domains_per_batch
global_iter = epoch * args.iters_per_epoch + i
if global_iter >= args.anneal_iters:
trade_off = args.trade_off
else:
trade_off = 1
loss = loss_ce + loss_penalty * trade_off
cls_acc = accuracy(y_all, labels_all)[0]
losses.update(loss.item(), x_all.size(0))
losses_ce.update(loss_ce.item(), x_all.size(0))
losses_penalty.update(loss_penalty.item(), x_all.size(0))
cls_accs.update(cls_acc.item(), x_all.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='IRM for Domain Generalization')
# dataset parameters
parser.add_argument('root', metavar='DIR',
help='root path of dataset')
parser.add_argument('-d', '--data', metavar='DATA', default='PACS',
help='dataset: ' + ' | '.join(utils.get_dataset_names()) +
' (default: PACS)')
parser.add_argument('-s', '--sources', nargs='+', default=None,
help='source domain(s)')
parser.add_argument('-t', '--targets', nargs='+', default=None,
help='target domain(s)')
parser.add_argument('--train-resizing', type=str, default='default')
parser.add_argument('--val-resizing', type=str, default='default')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=utils.get_model_names(),
help='backbone architecture: ' +
' | '.join(utils.get_model_names()) +
' (default: resnet50)')
parser.add_argument('--no-pool', action='store_true', help='no pool layer after the feature extractor.')
parser.add_argument('--finetune', action='store_true', help='whether use 10x smaller lr for backbone')
parser.add_argument('--freeze-bn', action='store_true', help='whether freeze all bn layers')
parser.add_argument('--dropout-p', type=float, default=0.1, help='only activated when freeze-bn is True')
# training parameters
parser.add_argument('--trade-off', default=1, type=float,
help='the trade off hyper parameter for irm penalty')
parser.add_argument('--anneal-iters', default=500, type=int,
help='anneal iterations (trade off is set to 1 during these iterations)')
parser.add_argument('-b', '--batch-size', default=36, type=int,
metavar='N',
help='mini-batch size (default: 36)')
parser.add_argument('--n-domains-per-batch', default=3, type=int,
help='number of domains in each mini-batch')
parser.add_argument('--lr', '--learning-rate', default=5e-4, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0.0005, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-i', '--iters-per-epoch', default=500, type=int,
help='Number of iterations per epoch')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument("--log", type=str, default='irm',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test', 'analysis'],
help="When phase is 'test', only test the model."
"When phase is 'analysis', only analysis the model.")
args = parser.parse_args()
main(args)