-
Notifications
You must be signed in to change notification settings - Fork 1
/
coral.py
272 lines (233 loc) · 12.5 KB
/
coral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import random
import time
import warnings
import argparse
import shutil
import os.path as osp
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader
import torch.nn.functional as F
import utils
from tllib.alignment.coral import CorrelationAlignmentLoss
from tllib.utils.data import ForeverDataIterator
from tllib.utils.metric import accuracy
from tllib.utils.meter import AverageMeter, ProgressMeter
from tllib.utils.logger import CompleteLogger
from tllib.utils.analysis import tsne, a_distance
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args: argparse.Namespace):
logger = CompleteLogger(args.log, args.phase)
print(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
train_transform = utils.get_train_transform(args.train_resizing, random_horizontal_flip=True,
random_color_jitter=True, random_gray_scale=True)
val_transform = utils.get_val_transform(args.val_resizing)
print("train_transform: ", train_transform)
print("val_transform: ", val_transform)
train_dataset, num_classes = utils.get_dataset(dataset_name=args.data, root=args.root, task_list=args.sources,
split='train', download=True, transform=train_transform,
seed=args.seed)
sampler = utils.RandomDomainSampler(train_dataset, args.batch_size, n_domains_per_batch=args.n_domains_per_batch)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
sampler=sampler, drop_last=True)
val_dataset, _ = utils.get_dataset(dataset_name=args.data, root=args.root, task_list=args.sources, split='val',
download=True, transform=val_transform, seed=args.seed)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
test_dataset, _ = utils.get_dataset(dataset_name=args.data, root=args.root, task_list=args.targets, split='test',
download=True, transform=val_transform, seed=args.seed)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
print("train_dataset_size: ", len(train_dataset))
print('val_dataset_size: ', len(val_dataset))
print("test_dataset_size: ", len(test_dataset))
train_iter = ForeverDataIterator(train_loader)
# create model
print("=> using pre-trained model '{}'".format(args.arch))
backbone = utils.get_model(args.arch)
pool_layer = nn.Identity() if args.no_pool else None
classifier = utils.ImageClassifier(backbone, num_classes, freeze_bn=args.freeze_bn, dropout_p=args.dropout_p,
finetune=args.finetune, pool_layer=pool_layer).to(device)
# define optimizer and lr scheduler
optimizer = SGD(classifier.get_parameters(base_lr=args.lr), args.lr, momentum=args.momentum, weight_decay=args.wd,
nesterov=True)
lr_scheduler = CosineAnnealingLR(optimizer, args.epochs * args.iters_per_epoch)
# define loss function
correlation_alignment_loss = CorrelationAlignmentLoss().to(device)
# resume from the best checkpoint
if args.phase != 'train':
checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu')
classifier.load_state_dict(checkpoint)
# analysis the model
if args.phase == 'analysis':
# extract features from both domains
feature_extractor = nn.Sequential(classifier.backbone, classifier.pool_layer, classifier.bottleneck).to(device)
source_feature = utils.collect_feature(val_loader, feature_extractor, device, max_num_features=100)
target_feature = utils.collect_feature(test_loader, feature_extractor, device, max_num_features=100)
print(len(source_feature), len(target_feature))
# plot t-SNE
tSNE_filename = osp.join(logger.visualize_directory, 'TSNE.png')
tsne.visualize(source_feature, target_feature, tSNE_filename)
print("Saving t-SNE to", tSNE_filename)
# calculate A-distance, which is a measure for distribution discrepancy
A_distance = a_distance.calculate(source_feature, target_feature, device)
print("A-distance =", A_distance)
return
if args.phase == 'test':
acc1 = utils.validate(test_loader, classifier, args, device)
print(acc1)
return
# start training
best_val_acc1 = 0.
best_test_acc1 = 0.
for epoch in range(args.epochs):
print(lr_scheduler.get_lr())
# train for one epoch
train(train_iter, classifier, optimizer, lr_scheduler, correlation_alignment_loss, args.n_domains_per_batch,
epoch, args)
# evaluate on validation set
print("Evaluate on validation set...")
acc1 = utils.validate(val_loader, classifier, args, device)
# remember best acc@1 and save checkpoint
torch.save(classifier.state_dict(), logger.get_checkpoint_path('latest'))
if acc1 > best_val_acc1:
shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best'))
best_val_acc1 = max(acc1, best_val_acc1)
# evaluate on test set
print("Evaluate on test set...")
best_test_acc1 = max(best_test_acc1, utils.validate(test_loader, classifier, args, device))
# evaluate on test set
classifier.load_state_dict(torch.load(logger.get_checkpoint_path('best')))
acc1 = utils.validate(test_loader, classifier, args, device)
print("test acc on test set = {}".format(acc1))
print("oracle acc on test set = {}".format(best_test_acc1))
logger.close()
def train(train_iter: ForeverDataIterator, model, optimizer, lr_scheduler: CosineAnnealingLR,
correlation_alignment_loss: CorrelationAlignmentLoss, n_domains_per_batch: int, epoch: int,
args: argparse.Namespace):
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
losses = AverageMeter('Loss', ':3.2f')
losses_ce = AverageMeter('CELoss', ':3.2f')
losses_penalty = AverageMeter('Penalty Loss', ':3.2f')
cls_accs = AverageMeter('Cls Acc', ':3.1f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses, losses_ce, losses_penalty, cls_accs],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i in range(args.iters_per_epoch):
x_all, labels_all, _ = next(train_iter)
x_all = x_all.to(device)
labels_all = labels_all.to(device)
# compute output
y_all, f_all = model(x_all)
# measure data loading time
data_time.update(time.time() - end)
# separate into different domains
y_all = y_all.chunk(n_domains_per_batch, dim=0)
f_all = f_all.chunk(n_domains_per_batch, dim=0)
labels_all = labels_all.chunk(n_domains_per_batch, dim=0)
loss_ce = 0
loss_penalty = 0
cls_acc = 0
for domain_i in range(n_domains_per_batch):
# cls loss
y_i, labels_i = y_all[domain_i], labels_all[domain_i]
loss_ce += F.cross_entropy(y_i, labels_i)
# update acc
cls_acc += accuracy(y_i, labels_i)[0] / n_domains_per_batch
# correlation alignment loss
for domain_j in range(domain_i + 1, n_domains_per_batch):
f_i = f_all[domain_i]
f_j = f_all[domain_j]
loss_penalty += correlation_alignment_loss(f_i, f_j)
# normalize loss
loss_ce /= n_domains_per_batch
loss_penalty /= n_domains_per_batch * (n_domains_per_batch - 1) / 2
loss = loss_ce + loss_penalty * args.trade_off
losses.update(loss.item(), x_all.size(0))
losses_ce.update(loss_ce.item(), x_all.size(0))
losses_penalty.update(loss_penalty.item(), x_all.size(0))
cls_accs.update(cls_acc.item(), x_all.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CORAL for Domain Generalization')
# dataset parameters
parser.add_argument('root', metavar='DIR',
help='root path of dataset')
parser.add_argument('-d', '--data', metavar='DATA', default='PACS',
help='dataset: ' + ' | '.join(utils.get_dataset_names()) +
' (default: PACS)')
parser.add_argument('-s', '--sources', nargs='+', default=None,
help='source domain(s)')
parser.add_argument('-t', '--targets', nargs='+', default=None,
help='target domain(s)')
parser.add_argument('--train-resizing', type=str, default='default')
parser.add_argument('--val-resizing', type=str, default='default')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=utils.get_model_names(),
help='backbone architecture: ' +
' | '.join(utils.get_model_names()) +
' (default: resnet50)')
parser.add_argument('--no-pool', action='store_true', help='no pool layer after the feature extractor.')
parser.add_argument('--finetune', action='store_true', help='whether use 10x smaller lr for backbone')
parser.add_argument('--freeze-bn', action='store_true', help='whether freeze all bn layers')
parser.add_argument('--dropout-p', type=float, default=0.1, help='only activated when freeze-bn is True')
# training parameters
parser.add_argument('--trade-off', default=1, type=float,
help='the trade off hyper parameter for correlation alignment loss')
parser.add_argument('-b', '--batch-size', default=36, type=int,
metavar='N',
help='mini-batch size (default: 36)')
parser.add_argument('--n-domains-per-batch', default=3, type=int,
help='number of domains in each mini-batch')
parser.add_argument('--lr', '--learning-rate', default=5e-4, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0.0005, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-i', '--iters-per-epoch', default=500, type=int,
help='Number of iterations per epoch')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument("--log", type=str, default='coral',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test', 'analysis'],
help="When phase is 'test', only test the model."
"When phase is 'analysis', only analysis the model.")
args = parser.parse_args()
main(args)