Python implementation of ITAMeD. Works for 1D and 2D Laplace NMR data At the moment it has a functionality of performing Inverse Laplace transform on 1D and 2D data comprised of Diffusion, T2, T1inversion, T1 saturation experiments.
The code is based on:
- Urbańczyk, M., Bernin, D., Koźmiński, W., & Kazimierczuk, K. (2013). Iterative Thresholding Algorithm for Multiexponential Decay applied to PGSE NMR data. Analytical Chemistry, 85(3), 1828–1833. https://doi.org/10.1021/ac3032004
- Urbańczyk, M., Koźmiński, W., & Kazimierczuk, K. (2014). Accelerating diffusion-ordered NMR spectroscopy by joint sparse sampling of diffusion and time dimensions. Angewandte Chemie - International Edition, 53(25), 6464–6467. https://doi.org/10.1002/anie.201402049
- Urbańczyk, M., Kharbanda, Y., Mankinen, O., & Telkki, V. V. (2020). Accelerating Restricted Diffusion NMR Studies with Time-Resolved and Ultrafast Methods. Analytical Chemistry, 92(14), 9948–9955. https://doi.org/10.1021/acs.analchem.0c01523
Future functionalities:
- Time-resolved Laplace NMR processing
- FTILT as in article [2]
- Automatic processing of Ultra-fast Laplace NMR