-
Notifications
You must be signed in to change notification settings - Fork 4
/
meteo_funcs.py
349 lines (280 loc) · 12.5 KB
/
meteo_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#!/usr/bin/env python
"""Some functionality for playing around with the meteo data"""
import calendar
import datetime as dt
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
from scipy.interpolate import UnivariateSpline
import matplotlib.dates as mdates
import ipywidgets as widgets
from IPython.display import display
from process_meteo_drivers import grab_meteo_data
parameters = ["Irradiance \n(kJ·m-2·d-1)",
"Min temp \n(degC)",
"Max temp \n (degC)",
"Vap press\n(kPa)",
"Wind spd \n (m·s-1)",
"Precip\n (mm·d-1)"]
regions = ["Ashanti", "Brong_Ahafo", "Central",
"Eastern", "Greater_Accra", "Northern",
"Upper_East", "Upper_West", "Volta",
"Western"]
def water_limitation(precip, et):
return np.where(precip >= et, 1, precip/et)
def temp_constraint(temp, t_min=12, t_max=41, t_opt=28):
f_temp = np.zeros_like(temp)
f_temp[temp < t_min] = 0.
f_temp = np.where(np.logical_and(t_min <= temp, temp <= t_opt),
(temp - t_min)/(t_opt - t_min),
f_temp)
f_temp = np.where(temp >= t_opt,
(t_max - temp)/(t_max-t_opt),
f_temp)
f_temp[f_temp<0] = 0.
return f_temp
def aggregate_plots():
start_date = dt.datetime(2010, 1, 1)
end_date = dt.datetime(2010, 12, 31)
dates = pd.date_range(start_date, end_date, freq='D')
options = [(date.strftime(' %d %b %Y '), date) for date in dates]
index = (0, len(options)-1)
selection_range_slider = widgets.SelectionRangeSlider(
options=options,
index=index,
description='Sowing & Harvest',
orientation='horizontal',
layout={'width': '600px'}
)
def plot_aggr_meteo(sowing_harvesting, region_name, selected_years):
sowing, harvesting = sowing_harvesting
meteo_files = get_region_data_func(region_name, selected_years, do_plot=False)
data = aggregate_meteo(meteo_files, sowing, harvesting, aggr=np.sum)
fig, axs = plt.subplots(nrows=2, ncols=3, sharex=True,
figsize=(12,12), squeeze=True)
axs = axs.flatten()
for i in range(6):
axs[i].plot(data[:, 0], data[:, i + 1], '-o')
axs[i].set_title(parameters[i])
fig.suptitle(region_name)
widgets.interact_manual(
plot_aggr_meteo,
sowing_harvesting=selection_range_slider,
region_name=widgets.Dropdown(
options=regions, value='Central', description='Region:',
disabled=False,),
selected_years=widgets.IntRangeSlider(min=2010, max=2018, value=(2015,2016)))
def plot_meteo(meteo):
"""Plot WOFOST meteo files
Parameters
----------
meteo : str or iter
Set of text files that contain different variables of interest
to plot. Can be done with just a file or a list of files.
"""
if type(meteo) != type([]): meteo = [meteo]
fig, axs = plt.subplots(nrows=3, ncols=2,
figsize=(13,9), sharex=True,squeeze=True)
axs = axs.flatten()
for meteo_file in meteo:
d = np.loadtxt(meteo_file.as_posix(), skiprows=20)
for i,p in enumerate(parameters):
if i == 5:
axs[i].plot(d[:,2], d[:,3+i], '-', lw=0.8, label=meteo_file.name)
else:
axs[i].plot(d[:,2], d[:,3+i], '-', lw=0.8)
axs[i].set_ylabel(p, fontsize=9)
axs[-1].legend(loc="best", frameon=False, fontsize=9)
fig.tight_layout()
def calc_et0(r_surf, t_min, t_max):
"""Calculate Hargreaves ET0 in mm/day
Parameters
----------
r_surf : float, array
Surface radiation
t_min : float, array
Min daily temperature (degC)
t_max : float array
Max daily temperature (degC)
"""
t_mean = 0.5*(t_min + t_max)
lam = 2260.
et0 = 0.0023 * ((t_max - t_min)** 0.5) * (t_mean + 17.8) * r_surf / lam
return et0
def aggregate_meteo(meteo_files, sowing, harvesting, aggr=np.cumsum):
rr = []
for meteo_file in meteo_files:
year = int(meteo_file.name.split(".")[-1])
d = np.loadtxt(meteo_file.as_posix(), skiprows=20)
doy = np.array([
dt.datetime(year, 1, 1) + dt.timedelta(days=int(j))
for j in d[:, 2]])
sow = dt.datetime(year, sowing.month, sowing.day)
harvest = dt.datetime(year, harvesting.month, harvesting.day)
passer = np.logical_and(doy >= sow,
doy <= harvest)
xx = aggr(d[passer, 3:], axis=0)
rr.append(np.r_[year, xx])
rr = np.array(rr)
return rr
def extract_data(lat, lon, meteo_folder="era5_data",
n_threads=2):
meteo_files = []
wrapper = lambda year: grab_meteo_data(
lon,
lat,
year,
f"era5_africa_{year:d}.nc",
meteo_folder,
site_name="Ghana")
# create a thread pool of n_threads threads
years = np.arange(2010,2019).astype(np.int)
with ThreadPoolExecutor(max_workers=n_threads) as executor:
for _ in executor.map(wrapper, years):
pass
def get_region_data():
@widgets.interact(region_name=widgets.Dropdown(
options=regions, value='Central', description='Region:',
disabled=False,),
selected_years=widgets.IntRangeSlider(min=2010, max=2018, value=(2015,2016)))
def get_region_data_fun(region_name, selected_years, do_plot=True):
start_year, end_year = selected_years
meteo_files = sorted([f for f in Path(f'./data/meteo/{region_name}/').glob(f"{region_name}.20??")])
years = [int(f.name.split(".")[1]) for f in meteo_files]
do_files = [f for y, f in zip(years, meteo_files) if start_year <= y <= end_year]
if do_plot:
plot_meteo(do_files)
else:
return do_files
def get_region_data_func(region_name, selected_years, do_plot=True):
start_year, end_year = selected_years
meteo_files = sorted([f for f in Path(f'./data/meteo/{region_name}/').glob(f"{region_name}.20??")])
years = [int(f.name.split(".")[1]) for f in meteo_files]
do_files = [f for y, f in zip(years, meteo_files) if start_year <= y <= end_year]
if do_plot:
plot_meteo(do_files)
else:
return do_files
def plot_stressors_func(region_name, year):
meteo_file = sorted([f for f in Path(f'./data/meteo/{region_name}/').glob(f"{region_name}.{year}")])[0]
df = pd.read_csv(meteo_file, skiprows=20, sep="\t",
names=["station", "year", "doy", "irradiance", "tmin", "tmax", "vpd", "mws", "prec"])
df.set_index(df['doy'])
et0 = calc_et0(df.irradiance.values, df.tmin.values, df.tmax.values)
f_water = water_limitation(df.prec.values, et0)
f_temp = temp_constraint(df.tmax.values)
plt.figure(figsize=(15, 5))
plt.plot(df.doy, f_water, 'o', lw=0.5, mfc="none", label="Water stress")
plt.plot(df.doy, f_temp, 's', lw=0.5, mfc="none", label="Heat stress")
plt.plot(df.doy, np.convolve(f_water, np.ones(10)/10., mode="same"), '-', lw=3, label="Smoothed Water Stress")
plt.plot(df.doy, np.convolve(f_temp, np.ones(10)/10., mode="same"), '-', lw=3, label="Smoothed Heat Stress")
plt.legend(loc="best")
def plot_stressors():
widgets.interact(plot_stressors_func,region_name=widgets.Dropdown(
options=regions, value='Upper_East', description='Region:',
disabled=False,),
year=widgets.IntSlider(min=2010, max=2018, value=(2015)))
def meteo_calculations(year):
df = pd.read_csv(f"data/meteo/-022611_106965/-022611_106965.{year}", skiprows=20, sep="\t",
names=["station", "year", "doy", "irradiance", "tmin", "tmax", "vpd", "mws", "prec"])
df.set_index(df['doy'])
et0 = calc_et0(df.irradiance.values, df.tmin.values, df.tmax.values)
f_water = water_limitation(df.prec.values, et0)
f_temp = temp_constraint(df.tmax.values)
f_water = np.convolve(f_water, np.ones(10)/10, mode="same")
f_temp = np.convolve(f_temp, np.ones(5)/5, mode="same")
return f_water, f_temp
def extract_smooth_fapar(product="fapar", year=2018, smoother=100):
golden_ratio = 0.61803398875
mask57 = 0b11100000 # Select bits 5, 6 and 7
product = product.lower()
if calendar.isleap(year):
xs = np.arange(1, 367)
else:
xs = np.arange(1, 366)
year = year-2003
x = np.arange(1, 366, 8)
y = np.loadtxt(f"data/mcd15_{product}_2003_2018_-022611_106965.txt")[:, year]
qa = np.loadtxt("data/mcd15_qa_2003_2018_-022611_106965.txt", dtype=np.uint8)[:, year]
unc = np.power(golden_ratio, np.right_shift(np.bitwise_and(qa, mask57), 5).astype(np.float32))
spl = UnivariateSpline(x, y, w=(1./unc)**2)
spl.set_smoothing_factor(smoother)
return spl(xs)
#plt.plot(x, y)
#plt.plot(xs, spl(xs), 'b', lw=3)
def crop_model():
start_date = dt.datetime(2014, 2, 1)
end_date = dt.datetime(2014, 12, 1)
dates = pd.date_range(start_date, end_date, freq='D')
options = [(date.strftime(' %d %b '), date) for date in dates]
index = (0, len(options) - 1)
integration_slider = widgets.SelectionRangeSlider(
options=options,
index=index,
description='Sowing & Harvest',
orientation='horizontal',
layout={'width': '600px'}
)
year_widget = widgets.IntSlider(min=2010, max=2018, value=2015)
widgets.interact(crop_model_func, year=year_widget,
integration_time = integration_slider,
epsilon = widgets.fixed(0.33)
)
def crop_model_func(year, epsilon, integration_time):
start_date0, end_date0 = integration_time
start_date = dt.date(year, start_date0.month, start_date0.day)
end_date = dt.date(year, end_date0.month, end_date0.day)
fapar = extract_smooth_fapar(year=year)
f_water, f_temp = meteo_calculations(year=year)
gpp = epsilon*fapar*f_water*f_temp
plt.figure(figsize=(15, 4))
t_axs = pd.date_range(start=dt.date(year, 1, 1),
end=dt.date(year, 12, 31))
fig, axs = plt.subplots(nrows=2, ncols=1, figsize=(15, 6),
sharex=True,squeeze=True)
axs = axs.flatten()
axs[0].plot(t_axs, gpp)
axs[0].axvspan(*mdates.datestr2num([start_date.strftime("%Y-%m-%d"),
end_date.strftime("%Y-%m-%d")]), color='0.9', alpha=0.5)
doy_start = int(start_date.strftime("%j"))
doy_end = int(end_date.strftime("%j")) + 1
assim = gpp[doy_start:doy_end]
axs[1].plot(pd.date_range(start=start_date, end=end_date),
assim.cumsum())
axs[1].set_xlim(dt.date(year, 1, 1),
dt.date(year, 12, 31))
axs[0].set_ylabel("GPP [funky units]")
axs[1].set_ylabel(r'$\int GPP dt$')
_ = axs[1].set_xlabel("Time [d]")
def plot_lai_stress():
widgets.interact(plot_lai_stress_func,
year=widgets.IntSlider(min=2010, max=2018),
product=widgets.Dropdown(options=["LAI", "fAPAR"]))
def plot_lai_stress_func(year, product):
product = product.lower()
fig, axs = plt.subplots(nrows=2, ncols=1, sharex=True, squeeze=True,
figsize=(15, 7))
axs = axs.flatten()
lai = np.loadtxt(f"data/mcd15_{product}_2003_2018_-022611_106965.txt")
df = pd.read_csv(f"data/meteo/-022611_106965/-022611_106965.{year}", skiprows=20, sep="\t",
names=["station", "year", "doy", "irradiance", "tmin", "tmax", "vpd", "mws", "prec"])
df.set_index(df['doy'])
et0 = calc_et0(df.irradiance.values, df.tmin.values, df.tmax.values)
f_water = water_limitation(df.prec.values, et0)
f_temp = temp_constraint(df.tmax.values)
axs[0].plot(df.doy, f_water, 'o', lw=0.5, mfc="none", label="Water stress")
axs[0].plot(df.doy, f_temp, 's', lw=0.5, mfc="none", label="Heat stress")
axs[0].plot(df.doy, np.convolve(f_water, np.ones(10)/10., mode="same"), '-', lw=3, label="Smoothed Water Stress")
axs[0].plot(df.doy, np.convolve(f_temp, np.ones(10)/10., mode="same"), '-', lw=3, label="Smoothed Heat Stress")
axs[0].legend(loc="best")
axs[0].set_ylabel("Stress factor [-]")
if product == "fapar":
axs[1].plot(np.arange(1, 366, 8), lai[:, year-2003]/100, '-', lw=3)
axs[1].set_ylabel("fAPAR [-]")
else:
axs[1].plot(np.arange(1, 366, 8), lai[:, year-2003]/10, '-', lw=3)
axs[1].set_ylabel("LAI [m2/m2]")
axs[1].set_xlabel(f"Day of year/{year} [d]")