-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_trainer.py
158 lines (128 loc) · 5.37 KB
/
run_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import division
import sys
import math, time
import argparse
from elfw import *
from utils import *
from trainer import TrainVal
# Rafael Redondo, Jaume Gibert - Eurecat (c) 2019
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# Arguments
ap = argparse.ArgumentParser(prog="trainer_elfw.py")
ap.add_argument("-Vs",
"--validation_set_id",
type=int,
help="Id of the validation set", # check elfw.py for details
default=0)
ap.add_argument("-S",
"--synthetic_augmentation_rate",
type=str,
help="Rate for synthetic augmentation.",
default=0)
ap.add_argument("-St",
"--synthetic_augmentation_types",
type=str,
help="Configuration of which synthetic objects are used: input must be a comma-separated string of integers such as 0,1,2",
default=None)
ap.add_argument("-e",
"--excluded_classes",
type=str,
help="List of classes that won't be used for training nor validation: input must be a comma-separated string of integers such as 0,1,2",
default=None)
ap.add_argument("-M",
"--model",
type=str,
help="Segmentation model: fcn, gcn or deeplab.",
default="fcn")
ap.add_argument("-bs",
"--batch_size",
type=str,
help="The batch size",
default=1)
ap.add_argument("-K",
"--checkpoints_path",
type=str,
help="Path to store the checkpoints",
default="/media/hd/elfw/checkpoints")
ap.add_argument("-R",
"--resume_checkpoint",
type=str,
help="Resumes training at this checkpoint",
default=None)
args = vars(ap.parse_args())
# -------------------------------------------------------------------------
# CUDA availability
if not torch.cuda.is_available():
print("Error: CUDA not available")
exit(0)
# -------------------------------------------------------------------------
# Command line arguments
batch_size = int(args['batch_size'])
Vs = args['validation_set_id'] # Index of the validation set file, see elfw.py.
K = args['checkpoints_path']
M = args['model']
R = args['resume_checkpoint']
S = float(args['synthetic_augmentation_rate'])
St = args['synthetic_augmentation_types']
St = St if not St else list(map(int, St.split(',')))
if S and not St:
sys.exit("check your parameters: if the augmentation ratio (-S) is positive, there should be at least one augmentation type (-St)")
if S==0 and St:
sys.exit("check your parameters: if the augmentation ratio (-S) is zero, you should specify the augmentation types (-St)")
e = args['excluded_classes']
e = e if not e else list(map(int, e.split(',')))
# -------------------------------------------------------------------------
# Some other hyperparameters
gcn_levels = 3 # Number of GCN levels, typically 3 for 256x256 and 4 for 512x512 image sizes
max_epochs = 301 # Maximum number of epochs
lr = 1E-3 # Learning rate
lr_decay = 0.2 # Learning rate decay factor
w_decay = 5E-4 # Weight decay, typically [5e-4]
momentum = 0.99 # Momentum, typically [0.9-0.99]
lr_milestones = [35,90,180] # lr milestones for a multistep lr scheduler
augment = True # random transformations for data augmentation
# -------------------------------------------------------------------------
# Train and Validation data sets and data loaders
ELFW_train = ELFWDataSet(split="train",
valset=Vs,
random_transform=augment,
synth_augmen_types=St,
synth_augmen_ratio=S,
compute_class_weights=True,
excluded_classes=e)
trainLoader = data.DataLoader(ELFW_train,
batch_size=batch_size,
num_workers=16,
shuffle=True,
pin_memory=True)
# The VALIDATION dataset and the corresponding data loader
ELFW_validation = ELFWDataSet(split="validation",
valset=Vs,
excluded_classes=e)
valLoader = data.DataLoader(ELFW_validation,
batch_size=batch_size,
num_workers=16,
shuffle=False,
pin_memory=True)
start_time = time.time()
TrainVal(trainLoader,
valLoader,
max_epochs,
lr,
lr_decay,
lr_milestones,
w_decay,
momentum,
augment,
S,
K,
R,
M,
gcn_levels)
elapsed_time = time.time() - start_time
hours = int(math.floor(elapsed_time / 3600))
minutes = int(math.floor(elapsed_time / 60 - hours * 60))
seconds = int(math.floor(elapsed_time - hours * 3600 - minutes * 60))
print('Training finished in \033[1m' + str(hours) + 'h ' + str(minutes) + 'm ' + str(seconds) + 's\033[0m')
print("\n")