-
Notifications
You must be signed in to change notification settings - Fork 0
/
rvgs.cpp
236 lines (213 loc) · 6.81 KB
/
rvgs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/* $Id: rvgs.c 55 2005-09-13 22:29:52Z asminer $ */
/* --------------------------------------------------------------------------
* This is an ANSI C library for generating random variates from six discrete
* distributions
*
* Generator Range (x) Mean Variance
*
* Bernoulli(p) x = 0,1 p p*(1-p)
* Binomial(n, p) x = 0,...,n n*p n*p*(1-p)
* Equilikely(a, b) x = a,...,b (a+b)/2 ((b-a+1)*(b-a+1)-1)/12
* Geometric(p) x = 0,... p/(1-p) p/((1-p)*(1-p))
* Pascal(n, p) x = 0,... n*p/(1-p) n*p/((1-p)*(1-p))
* Poisson(m) x = 0,... m m
*
* and seven continuous distributions
*
* Uniform(a, b) a < x < b (a + b)/2 (b - a)*(b - a)/12
* Exponential(m) x > 0 m m*m
* Erlang(n, b) x > 0 n*b n*b*b
* Normal(m, s) all x m s*s
* Lognormal(a, b) x > 0 see below
* Chisquare(n) x > 0 n 2*n
* Student(n) all x 0 (n > 1) n/(n - 2) (n > 2)
* Hyperexponential(
* alpha, m1, m2) 0<alpha<1, m1,m2>0 --- ---
*
* For the a Lognormal(a, b) random variable, the mean and variance are
*
* mean = exp(a + 0.5*b*b)
* variance = (exp(b*b) - 1) * exp(2*a + b*b)
*
* Name : rvgs.c (Random Variate GeneratorS)
* Author : Steve Park & Dave Geyer
* Language : ANSI C
* Latest Revision : 10-28-98
* --------------------------------------------------------------------------
*/
#include <math.h>
#include "rngs.h"
#include "rvgs.h"
long Bernoulli(double p)
/* ========================================================
* Returns 1 with probability p or 0 with probability 1 - p.
* NOTE: use 0.0 < p < 1.0
* ========================================================
*/
{
return ((Random() < (1.0 - p)) ? 0 : 1);
}
long Binomial(long n, double p)
/* ================================================================
* Returns a binomial distributed integer between 0 and n inclusive.
* NOTE: use n > 0 and 0.0 < p < 1.0
* ================================================================
*/
{
long i, x = 0;
for (i = 0; i < n; i++)
x += Bernoulli(p);
return (x);
}
long Equilikely(long a, long b)
/* ===================================================================
* Returns an equilikely distributed integer between a and b inclusive.
* NOTE: use a < b
* ===================================================================
*/
{
return (a + (long) ((b - a + 1) * Random()));
}
long Geometric(double p)
/* ====================================================
* Returns a geometric distributed non-negative integer.
* NOTE: use 0.0 < p < 1.0
* ====================================================
*/
{
return ((long) (log(1.0 - Random()) / log(p)));
}
long Pascal(long n, double p)
/* =================================================
* Returns a Pascal distributed non-negative integer.
* NOTE: use n > 0 and 0.0 < p < 1.0
* =================================================
*/
{
long i, x = 0;
for (i = 0; i < n; i++)
x += Geometric(p);
return (x);
}
long Poisson(double m)
/* ==================================================
* Returns a Poisson distributed non-negative integer.
* NOTE: use m > 0
* ==================================================
*/
{
double t = 0.0;
long x = 0;
while (t < m) {
t += Exponential(1.0);
x++;
}
return (x - 1);
}
double Uniform(double a, double b)
/* ===========================================================
* Returns a uniformly distributed real number between a and b.
* NOTE: use a < b
* ===========================================================
*/
{
return (a + (b - a) * Random());
}
double Exponential(double m)
/* =========================================================
* Returns an exponentially distributed positive real number.
* NOTE: use m > 0.0
* =========================================================
*/
{
return (-m * log(1.0 - Random()));
}
double Erlang(long n, double b)
/* ==================================================
* Returns an Erlang distributed positive real number.
* NOTE: use n > 0 and b > 0.0
* ==================================================
*/
{
long i;
double x = 0.0;
for (i = 0; i < n; i++)
x += Exponential(b);
return (x);
}
double Normal(double m, double s)
/* ========================================================================
* Returns a normal (Gaussian) distributed real number.
* NOTE: use s > 0.0
*
* Uses a very accurate approximation of the normal idf due to Odeh & Evans,
* J. Applied Statistics, 1974, vol 23, pp 96-97.
* ========================================================================
*/
{
const double p0 = 0.322232431088; const double q0 = 0.099348462606;
const double p1 = 1.0; const double q1 = 0.588581570495;
const double p2 = 0.342242088547; const double q2 = 0.531103462366;
const double p3 = 0.204231210245e-1; const double q3 = 0.103537752850;
const double p4 = 0.453642210148e-4; const double q4 = 0.385607006340e-2;
double u, t, p, q, z;
u = Random();
if (u < 0.5)
t = sqrt(-2.0 * log(u));
else
t = sqrt(-2.0 * log(1.0 - u));
p = p0 + t * (p1 + t * (p2 + t * (p3 + t * p4)));
q = q0 + t * (q1 + t * (q2 + t * (q3 + t * q4)));
if (u < 0.5)
z = (p / q) - t;
else
z = t - (p / q);
return (m + s * z);
}
double Lognormal(double a, double b)
/* ====================================================
* Returns a lognormal distributed positive real number.
* NOTE: use b > 0.0
* ====================================================
*/
{
return (exp(a + b * Normal(0.0, 1.0)));
}
double Chisquare(long n)
/* =====================================================
* Returns a chi-square distributed positive real number.
* NOTE: use n > 0
* =====================================================
*/
{
long i;
double z, x = 0.0;
for (i = 0; i < n; i++) {
z = Normal(0.0, 1.0);
x += z * z;
}
return (x);
}
double Student(long n)
/* ===========================================
* Returns a student-t distributed real number.
* NOTE: use n > 0
* ===========================================
*/
{
return (Normal(0.0, 1.0) / sqrt(Chisquare(n) / n));
}
double Hyperexponential(double alpha, double m1, double m2)
/* =========================================================
* Returns a hyperexponentially distributed positive real number.
* NOTE: use 0 <= alpha <= 1, m1 > 0, m2 > 0
* =========================================================
*/
{
double u = Uniform(0,1);
if (u < alpha){
return Exponential(m1);
} else {
return Exponential(m2);
}
}