-
Notifications
You must be signed in to change notification settings - Fork 6
/
main.sbatch
executable file
·54 lines (38 loc) · 1.67 KB
/
main.sbatch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/bin/sh
# You can control the resources and scheduling with '#SBATCH' settings
# (see 'man sbatch' for more information on setting these parameters)
# The default partition is the 'general' partition
#SBATCH --partition=cor,general
# The default Quality of Service is the 'short' QoS (maximum run time: 4 hours)
#SBATCH --qos=long
# The default run (wall-clock) time is 1 minute
#SBATCH --time=168:00:00
# The default number of parallel tasks per job is 1
#SBATCH --ntasks=1
# Request 1 CPU per active thread of your program (assume 1 unless you specifically set this)
# The default number of CPUs per task is 1 (note: CPUs are always allocated per 2)
#SBATCH --cpus-per-gpu=4
# The default memory per node is 1024 megabytes (1GB) (for multiple tasks, specify --mem-per-cpu instead)
#SBATCH --mem-per-cpu=12000
# Set mail type to 'END' to receive a mail when the job finishes
# Do not enable mails when submitting large numbers (>20) of jobs at once
#SBATCH --mail-type=BEGIN,END
# Request GPU
#SBATCH --gres=gpu
# Your job commands go below here
# Uncomment these lines when your job requires this software
module use /opt/insy/modulefiles
module load cuda/11.2
module load miniconda
module load devtoolset/10 # newest version of gcc / g++
# init conda
conda activate rsl-solving-occlusion
# we want to show the used python bin
which python
# we want to show the available GPUs
nvidia-smi
# Complex or heavy commands should be started with 'srun' (see 'man srun' for more information)
# For example: srun python my_program.py
# Use this simple command to check that your sbatch settings are working (verify the resources allocated in the usage statistics)
python -u main.py $1
conda deactivate