-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtutorial.jl
131 lines (95 loc) · 3.77 KB
/
tutorial.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
using Bridge, Distributions, StaticArrays
using Plots
using LinearAlgebra
#
t = 2.
n = 100
dt = t / n
x0 = 1.
# define a Float64 Wiener process
P = Wiener() #returns object representing standard Brownian motion
typeof(P)
#prints Bridge.Wiener{Float64}
supertype(typeof(P))
#prints Bridge.ContinuousTimeProcess{Float64}
# sample Brownian motion on an equidistant grid
W = sample(range(0., stop=t, length=n), P)
W = sample(0:dt:t, P) # similar way
println(W.tt)
# prints [0.0,0.03,0.06,..., 0.93.96,0.99]
plot(W.tt, W.yy)
# plots path
plot(W)
# Bridge defines a plot @recipe (via RecipesBase)
# sample complex Brownian motion on a nonequidistant grid
X = sample(sort(rand(1000)), Wiener{Complex{Float64}}())
plot(real(X.yy), imag(X.yy))
# sample a standard Brownian bridge ending in v at time s
s = 1.
v = 0.
B = sample(0:dt:s, WienerBridge(s, v))
plot(W.tt, W.yy, color="blue")
plot!(B.tt, B.yy, color="red")
# displays X and Brownian bridge B in red
# Define a diffusion process
struct OrnsteinUhlenbeck <: ContinuousTimeProcess{Float64}
β::Float64 # drift parameter (also known as inverse relaxation time)
σ::Float64 # diffusion parameter
function OrnsteinUhlenbeck(β::Float64, σ::Float64)
isnan(β) || β > 0. || error("Parameter λ must be positive.")
isnan(σ) || σ > 0. || error("Parameter σ must be positive.")
new(β, σ)
end
end
# define drift and sigma of OrnsteinUhlenbeck
import Bridge: b, σ, a, transitionprob
Bridge.b(t,x, P::OrnsteinUhlenbeck) = -P.β*x
Bridge.σ(t, x, P::OrnsteinUhlenbeck) = P.σ
Bridge.a(t, x, P::OrnsteinUhlenbeck) = P.σ^2
# simulate OrnsteinUhlenbeck using Euler scheme
W = sample(0:0.01:10, Wiener{Float64}())
X = solve(EulerMaruyama(), 0.1, W, OrnsteinUhlenbeck(20., 1.))
plot(X.tt, X.yy)
# define transition density
transitionprob(s, x, t, P::OrnsteinUhlenbeck) = Normal(x*exp(-P.β*(t-s)), sqrt((0.5P.σ^2/P.β) *(1-exp(-2*P.β*(t-s)))))
# plot likelihood of β
LL = [(β, llikelihood(X, OrnsteinUhlenbeck(β, 1.))) for β in 1.:30.]
for (β, ll) in LL
println("β $β loglikelihood ", ll )
end
plot(Float64[β for (β, ll) in LL], Float64[ll for (β, ll) in LL])
# sample OrnsteinUhlenbeck exactly. compare with euler scheme which degrates as dt = 0.07
X = solve(EulerMaruyama(), 0.1, sample(0:0.07:10, Wiener{Float64}()), OrnsteinUhlenbeck(20., 1.))
X2 = sample(0:0.07:10, OrnsteinUhlenbeck(20., 1.), 0.1)
plot(X.tt, 1 .+ X.yy)
plot!(X2.tt, X2.yy)
# sample vector Brownian motion
W2 = sample(0:0.1:10, Wiener{SVector{4,Float64}}())
llikelihood(W2,Wiener{SVector{4,Float64}}())
P = BridgeProp(OrnsteinUhlenbeck(3., 1.), 0:0.01:1, (0., 1.), 1.)
X = solve(EulerMaruyama(), 0.1, sample(0:0.01:1, Wiener{Float64}()),P)
P2 = PBridgeProp(OrnsteinUhlenbeck(3., 1.), 0., 0., 1., 2., 2., 0., 1., 0.3, 1.)
Y = solve(EulerMaruyama(), 0.1, sample(0:0.01:2, Wiener{Float64}()),P2)
p = plot(Y.tt, Y.yy, xlim=(0, 2), ylim=(-3,3), legend=false)
for i in 1:100
global Y = solve(EulerMaruyama(), 0.1, sample(0:0.01:2, Wiener{Float64}()),P2)
plot!(p, Y.tt, Y.yy, xlim=(0, 2), ylim=(-3,3), linewidth=0.2)
end
display(p)
# Define a diffusion process
struct VOrnsteinUhlenbeck{d} <: ContinuousTimeProcess{SVector{d,Float64}}
β # drift parameter (also known as inverse relaxation time)
σ # diffusion parameter
function VOrnsteinUhlenbeck{d}(β, σ) where d
new(β, σ)
end
end
# define drift and sigma of VOrnsteinUhlenbeck
Bridge.b(t, x, P::VOrnsteinUhlenbeck) = -P.β*x
Bridge.σ(t, x, P::VOrnsteinUhlenbeck) = P.σ*I
Bridge.a(t, x, P::VOrnsteinUhlenbeck) = P.σ*P.σ'*I
# Simulate
tt = 0.:0.003:10.
X = solve(EulerMaruyama(), SVector(0., 0.), sample(tt, Wiener{SVector{2,Float64}}()), VOrnsteinUhlenbeck{2}(3., 1.))
yy = Bridge.mat(X.yy)
plot(yy[1,:], yy[2,:], xlim=(-2, 2), ylim=(-2,2), linewidth=0.5)