-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconvert_parameters.py
80 lines (61 loc) · 3.19 KB
/
convert_parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import torch
from torch import nn
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--load_path', type=str, required=True,
)
parser.add_argument(
'--save_path', type=str, required=True,
)
parser.add_argument(
'--dataset', type=str, default='hico',
)
parser.add_argument(
'--num_queries', type=int, default=100,
)
args = parser.parse_args()
return args
def main(args):
ps = torch.load(args.load_path)
obj_ids = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 27, 28, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 67, 70,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 84, 85, 86, 87, 88, 89, 90]
# For no pair
obj_ids.append(91)
for k in list(ps['model'].keys()):
print(k)
if 'decoder' in k:
ps['model'][k.replace('decoder', 'stage2_decoder')] = ps['model'][k].clone()
ps['model']['sub_bbox_embed.layers.0.weight'] = ps['model']['bbox_embed.layers.0.weight'].clone()
ps['model']['sub_bbox_embed.layers.0.bias'] = ps['model']['bbox_embed.layers.0.bias'].clone()
ps['model']['sub_bbox_embed.layers.1.weight'] = ps['model']['bbox_embed.layers.1.weight'].clone()
ps['model']['sub_bbox_embed.layers.1.bias'] = ps['model']['bbox_embed.layers.1.bias'].clone()
ps['model']['sub_bbox_embed.layers.2.weight'] = ps['model']['bbox_embed.layers.2.weight'].clone()
ps['model']['sub_bbox_embed.layers.2.bias'] = ps['model']['bbox_embed.layers.2.bias'].clone()
ps['model']['obj_bbox_embed.layers.0.weight'] = ps['model']['bbox_embed.layers.0.weight'].clone()
ps['model']['obj_bbox_embed.layers.0.bias'] = ps['model']['bbox_embed.layers.0.bias'].clone()
ps['model']['obj_bbox_embed.layers.1.weight'] = ps['model']['bbox_embed.layers.1.weight'].clone()
ps['model']['obj_bbox_embed.layers.1.bias'] = ps['model']['bbox_embed.layers.1.bias'].clone()
ps['model']['obj_bbox_embed.layers.2.weight'] = ps['model']['bbox_embed.layers.2.weight'].clone()
ps['model']['obj_bbox_embed.layers.2.bias'] = ps['model']['bbox_embed.layers.2.bias'].clone()
ps['model']['obj_class_embed.weight'] = ps['model']['class_embed.weight'].clone()[obj_ids]
ps['model']['obj_class_embed.bias'] = ps['model']['class_embed.bias'].clone()[obj_ids]
ps['model']['query_embed.weight'] = ps['model']['query_embed.weight'].clone()[:args.num_queries]
if args.dataset == 'vcoco':
l = nn.Linear(ps['model']['obj_class_embed.weight'].shape[1], 1)
l.to(ps['model']['obj_class_embed.weight'].device)
ps['model']['obj_class_embed.weight'] = torch.cat((
ps['model']['obj_class_embed.weight'][:-1], l.weight, ps['model']['obj_class_embed.weight'][[-1]]))
ps['model']['obj_class_embed.bias'] = torch.cat(
(ps['model']['obj_class_embed.bias'][:-1], l.bias, ps['model']['obj_class_embed.bias'][[-1]]))
torch.save(ps, args.save_path)
if __name__ == '__main__':
args = get_args()
main(args)