-
-
Notifications
You must be signed in to change notification settings - Fork 45
/
lattice_decomposition_bls12_381_g1.sage
202 lines (157 loc) · 5.3 KB
/
lattice_decomposition_bls12_381_g1.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# BN254 GLV Endomorphism
# Lattice Decomposition
#
# ############################################################
# Parameters
u = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
p = (u - 1)^2 * (u^4 - u^2 + 1)//3 + u
r = u^4 - u^2 + 1
cofactor = Integer('0x396c8c005555e1568c00aaab0000aaab')
print('p : ' + p.hex())
print('r : ' + r.hex())
# Cube root of unity (mod r) formula for any BLS12 curves
lambda1_r = u^2 - 1
assert lambda1_r^3 % r == 1
print('λᵩ1 : ' + lambda1_r.hex())
print('λᵩ1+r: ' + (lambda1_r+r).hex())
lambda2_r = u^4
assert lambda2_r^3 % r == 1
print('λᵩ2 : ' + lambda2_r.hex())
# Finite fields
F = GF(p)
# K2.<u> = PolynomialRing(F)
# F2.<beta> = F.extension(u^2+9)
# K6.<v> = PolynomialRing(F2)
# F6.<eta> = F2.extension(v^3-beta)
# K12.<w> = PolynomialRing(F6)
# K12.<gamma> = F6.extension(w^2-eta)
# Curves
b = 4
G1 = EllipticCurve(F, [0, b])
# G2 = EllipticCurve(F2, [0, b*beta])
(phi1, phi2) = (root for root in GF(p)(1).nth_root(3, all=True) if root != 1)
print('𝜑1 :' + Integer(phi1).hex())
print('𝜑2 :' + Integer(phi2).hex())
assert phi1^3 % p == 1
assert phi2^3 % p == 1
# Test generator
set_random_seed(1337)
# Check
def checkEndo():
Prand = G1.random_point()
assert Prand != G1([0, 1, 0]) # Infinity
# Clear cofactor
P = Prand * cofactor
(Px, Py, Pz) = P
Qendo1 = G1([Px*phi1 % p, Py, Pz])
Qendo2 = G1([Px*phi2 % p, Py, Pz])
Q1 = lambda1_r * P
Q2 = lambda2_r * P
assert P != Q1
assert P != Q2
assert (F(Px)*F(phi1))^3 == F(Px)^3
assert (F(Px)*F(phi2))^3 == F(Px)^3
assert Q1 == Qendo2
assert Q2 == Qendo2
print('Endomorphism OK with 𝜑2')
checkEndo()
# Lattice
b = [
[u^2-1, -1],
[1, u^2]
]
# Babai rounding
ahat = [u^2, 1]
v = int(r).bit_length()
v = int(((v + 64 - 1) // 64) * 64) # round to next multiple of 64
l = [Integer(a << v) // r for a in ahat]
print('𝛼\u03051: ' + l[0].hex())
print('𝛼\u03052: ' + l[1].hex())
def getGLV2_decomp(scalar):
a0 = (l[0] * scalar) >> v
a1 = (l[1] * scalar) >> v
k0 = scalar - a0 * b[0][0] - a1 * b[1][0]
k1 = 0 - a0 * b[0][1] - a1 * b[1][1]
assert int(k0).bit_length() <= (int(r).bit_length() + 1) // 2
assert int(k1).bit_length() <= (int(r).bit_length() + 1) // 2
assert scalar == (k0 + k1 * (lambda1_r % r)) % r
assert scalar == (k0 + k1 * (lambda2_r % r)) % r
return k0, k1
def recodeScalars(k):
m = 2
L = ((int(r).bit_length() + m-1) // m) + 1 # l = ⌈log2 r/m⌉ + 1
b = [[0] * L, [0] * L]
b[0][L-1] = 1
for i in range(0, L-1): # l-2 inclusive
b[0][i] = 2 * ((k[0] >> (i+1)) & 1) - 1
for j in range(1, m):
for i in range(0, L):
b[j][i] = b[0][i] * (k[j] & 1)
k[j] = (k[j]//2) - (b[j][i] // 2)
return b
def buildLut(P0, P1):
m = 2
lut = [0] * (1 << (m-1))
lut[0] = P0
lut[1] = P0 + P1
return lut
def pointToString(P):
(Px, Py, Pz) = P
return '(x: ' + Integer(Px).hex() + ', y: ' + Integer(Py).hex() + ', z: ' + Integer(Pz).hex() + ')'
def scalarMulGLV(scalar, P0):
m = 2
L = ((int(r).bit_length() + m-1) // m) + 1 # l = ⌈log2 r/m⌉ + 1
print('L: ' + str(L))
print('scalar: ' + Integer(scalar).hex())
k0, k1 = getGLV2_decomp(scalar)
print('k0: ' + k0.hex())
print('k1: ' + k1.hex())
P1 = (lambda1_r % r) * P0
(Px, Py, Pz) = P0
P1_endo = G1([Px*phi2 % p, Py, Pz])
assert P1 == P1_endo
expected = scalar * P0
decomp = k0*P0 + k1*P1
assert expected == decomp
print('------ recode scalar -----------')
even = k0 & 1 == 1
if even:
k0 -= 1
b = recodeScalars([k0, k1])
print('b0: ' + str(list(reversed(b[0]))))
print('b1: ' + str(list(reversed(b[1]))))
print('------------ lut ---------------')
lut = buildLut(P0, P1)
print('------------ mul ---------------')
print('b0 L-1: ' + str(b[0][L-1]))
Q = b[0][L-1] * lut[b[1][L-1] & 1]
for i in range(L-2, -1, -1):
Q *= 2
Q += b[0][i] * lut[b[1][i] & 1]
if even:
Q += P0
print('final Q: ' + pointToString(Q))
print('expected: ' + pointToString(expected))
assert Q == expected # TODO debug
# Test generator
set_random_seed(1337)
for i in range(1):
print('---------------------------------------')
# scalar = randrange(r) # Pick an integer below curve order
# P = G1.random_point()
scalar = Integer('0xf7e60a832eb77ac47374bc93251360d6c81c21add62767ff816caf11a20d8db')
P = G1([
Integer('0xf9679bb02ee7f352fff6a6467a5e563ec8dd38c86a48abd9e8f7f241f1cdd29d54bc3ddea3a33b62e0d7ce22f3d244a'),
Integer('0x50189b992cf856846b30e52205ff9ef72dc081e9680726586231cbc29a81a162120082585f401e00382d5c86fb1083f'),
Integer(1)
])
scalarMulGLV(scalar, P)