forked from NVIDIA/sentiment-discovery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune_classifier.py
executable file
·639 lines (575 loc) · 33.5 KB
/
finetune_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
import argparse
import os
import sys
import time
import math
import random
import collections
import pandas as pd
import pickle as pkl
import json
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
from logreg_utils import train_logreg
from fp16 import FP16_Module, FP16_Optimizer
from reparameterization import apply_weight_norm, remove_weight_norm
import model as M
from tqdm import tqdm
from model import DistributedDataParallel as DDP
from configure_data import configure_data
from learning_rates import AnnealingLR, SlantedTriangularLR, ConstantLR
from arguments import add_general_args, add_model_args, add_classifier_model_args, add_finetune_classifier_args
from metric_utils import update_info_dict, get_metric
from threshold import _binary_threshold, _neutral_threshold_two_output
def get_data_and_args():
parser = argparse.ArgumentParser(description='PyTorch Sentiment Discovery Transfer Learning')
parser = add_general_args(parser)
parser = add_model_args(parser)
parser = add_classifier_model_args(parser)
data_config, data_parser, finetune_classifier_parser, parser = add_finetune_classifier_args(parser)
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
if args.seed is not -1:
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
(train_data, val_data, test_data), tokenizer = data_config.apply(args)
args.data_size = tokenizer.num_tokens
args.padding_idx = tokenizer.command_name_map['pad'].Id
return (train_data, val_data, test_data), tokenizer, args
def get_model_and_optim(args, train_data):
if args.use_softmax:
args.report_no_thresholding = True
ntokens = args.data_size
concat_pools = args.concat_max, args.concat_min, args.concat_mean
if args.model == 'transformer':
model = M.SentimentClassifier(args.model, ntokens, None, None, None, args.classifier_hidden_layers, args.classifier_dropout,
None, concat_pools, args.aux_lm_loss, args)
else:
model = M.SentimentClassifier(args.model, ntokens, args.emsize, args.nhid, args.nlayers,
args.classifier_hidden_layers, args.classifier_dropout, args.all_layers, concat_pools, args.aux_lm_loss, args)
if args.cuda:
model.cuda()
if args.fp16:
model.half()
# load char embedding and recurrent encoder for featurization
if args.load is not None and args.load != '':
with open(args.load, 'rb') as f:
sd = x = torch.load(f, 'cpu')
if 'sd' in sd:
sd = sd['sd']
if not args.load_finetuned:
if 'lm_encoder' in sd:
sd = sd['lm_encoder']
try:
model.lm_encoder.load_state_dict(sd)
except:
# if state dict has weight normalized parameters apply and remove weight norm to model while loading sd
if hasattr(model.lm_encoder, 'rnn'):
apply_weight_norm(model.lm_encoder.rnn)
else:
apply_weight_norm(model.lm_encoder)
model.lm_encoder.load_state_dict(sd)
remove_weight_norm(model)
else:
model.load_state_dict(sd)
if args.thresh_test_preds:
model.set_thresholds(pd.read_csv(args.thresh_test_preds, header=None).values.squeeze(), args.double_thresh, args.dual_thresh and not args.joint_binary_train)
optims = {
'adam' : 'Adam',
'sgd' : 'SGD'
}
optim = eval('torch.optim.'+ optims[args.optim.lower()])(model.parameters(), lr=args.lr)
iters_per_epoch = len(train_data)
num_iters = iters_per_epoch * args.epochs
assert not (args.stlr_cut_frac and args.cos_cut_frac)
if args.stlr_cut_frac is not None:
LR = SlantedTriangularLR(optim, max_val=args.lr, cut_frac=args.stlr_cut_frac, num_iters=num_iters)
elif args.cos_cut_frac is not None:
LR = AnnealingLR(optim, start_lr=args.lr, warmup_iter=int(args.cos_cut_frac * num_iters), num_iters=num_iters, decay_style='cosine')
elif args.decay_style is not None:
warmup_iters = int(args.warmup_epochs * iters_per_epoch)
if args.decay_epochs == -1:
decay_iters = int(args.epochs * iters_per_epoch)
else:
decay_iters = int(args.decay_epochs * iters_per_epoch)
if args.decay_style == 'constant':
#TODO: implement
LR = AnnealingLR(optim, start_lr=args.lr, warmup_iter=warmup_iters, num_iters=decay_iters+warmup_iters, decay_style=args.decay_style)
elif args.decay_style == 'linear':
#TODO: implement
LR = AnnealingLR(optim, start_lr=args.lr, warmup_iter=warmup_iters, num_iters=decay_iters+warmup_iters, decay_style=args.decay_style)
elif args.decay_style == 'cosine':
LR = AnnealingLR(optim, start_lr=args.lr, warmup_iter=warmup_iters, num_iters=decay_iters+warmup_iters, decay_style=args.decay_style)
elif args.decay_style == 'exponential':
#TODO: implement
LR = ConstantLR(optim, lr=args.lr)
else:
LR = ConstantLR(optim, lr=args.lr)
else:
LR = ConstantLR(optim, lr=args.lr)
return model, optim, LR
def get_supervised_batch(batch, use_cuda, model, max_seq_len=None, args=None, save_outputs=False, heads_per_class=1):
'''
Process batch and return tuple of (text, text label, text length) long tensors.
Text is returned in column format with (time, batch) dimensions.
'''
text = batch['text'][0]
timesteps = batch['length']
labels = batch['label']
text = Variable(text).long()
timesteps = Variable(timesteps).long()
labels = Variable(labels)
if max_seq_len is not None:
text = text[:, :max_seq_len]
timesteps = torch.clamp(timesteps, max=args.max_seq_len)
if args.use_softmax:
labels = Variable(labels).view(-1).long()
else:
labels = labels.view(-1, int(model.out_dim/model.heads_per_class)).float()
if use_cuda:
text, timesteps, labels = text.cuda(), timesteps.cuda(), labels.cuda()
return text.t(), labels, timesteps-1
def transform(model, text_batch, labels_batch, length_batch, args, LR=None):
batch_size = text_batch.size(1)
def get_outs():
if args.model.lower() == 'transformer':
class_out, (lm_or_encoder_out, state) = model(text_batch, length_batch, args.get_hidden)
else:
model.lm_encoder.rnn.reset_hidden(args.batch_size)
for _ in range(1 + args.num_hidden_warmup):
class_out, (lm_or_encoder_out, state) = model(text_batch, length_batch, args.get_hidden)
# if args.heads_per_class > 1:
# class_out, mean_out, std_out = class_out
# if args.use_softmax:
# class_out = torch.max(class_out,-1)[1].view(-1,1)
# class_out = class_out.float()
# if args.heads_per_class > 1:
# class_out = class_out, mean_out, std_out
return class_out, (lm_or_encoder_out, state)
if LR is not None and not args.use_logreg:
# doing true finetuning
class_out, lm_or_encoder_out = get_outs()
else:
with torch.no_grad():
class_out, lm_or_encoder_out = get_outs()
# class_out = class_out.float().view(-1, model.out_dim)
return class_out, lm_or_encoder_out
def finetune(model, text, args, val_data=None, LR=None, reg_loss=None, tqdm_desc='nvidia', save_outputs=False,
heads_per_class=1, default_threshold=0.5, last_thresholds=[], threshold_validation=True, debug=False):
'''
Apply featurization `model` to extract features from text in data loader.
Featurization model should return cell state not hidden state.
`text` data loader should return tuples of ((text, text length), text label)
Returns labels and features for samples in text.
'''
# NOTE: If in training mode, do not run in .eval() mode. Bug fixed.
if LR is None:
model.lm_encoder.eval()
model.classifier.eval()
else:
# Very important to reset back to train mode for future epochs!
model.lm_encoder.train()
model.classifier.train()
# Optionally, freeze language model (train MLP only)
# NOTE: un-freeze gradients if they every need to be tweaked in future iterations
if args.freeze_lm:
for param in model.lm_encoder.parameters():
param.requires_grad = False
# Choose which losses to implement
if args.use_softmax:
if heads_per_class > 1:
clf_loss_fn = M.MultiHeadCrossEntropyLoss(heads_per_class=heads_per_class)
else:
clf_loss_fn = torch.nn.CrossEntropyLoss()
else:
if heads_per_class > 1:
clf_loss_fn = M.MultiHeadBCELoss(heads_per_class=heads_per_class)
else:
clf_loss_fn = torch.nn.BCELoss()
if args.aux_lm_loss:
aux_loss_fn = torch.nn.CrossEntropyLoss(reduce=False)
else:
aux_loss_fn = None
if args.thresh_test_preds:
thresholds = model.get_thresholds()
elif len(last_thresholds) > 0:
# Re-use previous thresholds, if provided.
# Why? More accurate reporting, and not that slow. Don't compute thresholds on training, for example -- but can recycle val threshold
thresholds = last_thresholds
else:
# Default thresholds -- faster, but less accurate
thresholds = np.array([default_threshold for _ in range(int(model.out_dim/heads_per_class))])
total_loss = 0
total_classifier_loss = 0
total_lm_loss = 0
total_multihead_variance_loss = 0
class_accuracies = torch.zeros(model.out_dim).cuda()
if model.out_dim/heads_per_class > 1 and not args.use_softmax:
keys = list(args.non_binary_cols)
elif args.use_softmax:
keys = [str(m) for m in range(model.out_dim)]
else:
keys = ['']
info_dicts = [{'fp' : 0, 'tp' : 0, 'fn' : 0, 'tn' : 0, 'std' : 0,
'metric' : args.report_metric, 'micro' : args.micro} for k in keys]
# Sanity check -- should do this sooner. Does #classes match expected output?
assert model.out_dim == len(keys) * heads_per_class, "model.out_dim does not match keys (%s) x heads_per_class (%d)" % (keys, heads_per_class)
batch_adjustment = 1. / len(text)
# Save all outputs *IF* small enough, and requested for thresholding -- basically, on validation
#if threshold_validation and LR is not None:
all_batches = []
all_stds = []
all_labels = []
for i, data in tqdm(enumerate(text), total=len(text), unit="batch", desc=tqdm_desc, position=1, ncols=100):
text_batch, labels_batch, length_batch = get_supervised_batch(data, args.cuda, model, args.max_seq_len, args, heads_per_class=args.heads_per_class)
class_out, (lm_out, _) = transform(model, text_batch, labels_batch, length_batch, args, LR)
class_std = None
if heads_per_class > 1:
all_heads, class_out, class_std, clf_out = class_out
classifier_loss = clf_loss_fn(all_heads, labels_batch)
else:
class_out, clf_out = class_out
if args.dual_thresh:
class_out = class_out[:, :-1]
classifier_loss = clf_loss_fn(class_out, labels_batch)
if args.use_softmax:
class_out = F.softmax(class_out, -1)
loss = classifier_loss
classifier_loss = classifier_loss.clone() # save for reporting
# Also compute multihead variance loss -- from classifier [divide by output size since it scales linearly]
if args.aux_head_variance_loss_weight > 0.:
multihead_variance_loss = model.classifier.get_last_layer_variance() / model.out_dim
loss = loss + multihead_variance_loss * args.aux_head_variance_loss_weight
# Divide by # batches? Since we're looking at the parameters here, and should be batch independent.
# multihead_variance_loss *= batch_adjustment
if args.aux_lm_loss:
lm_labels = text_batch[1:]
lm_losses = aux_loss_fn(lm_out[:-1].view(-1, lm_out.size(2)).contiguous().float(),
lm_labels.contiguous().view(-1))
padding_mask = (torch.arange(lm_labels.size(0)).unsqueeze(1).cuda() > length_batch).float()
portion_unpadded = padding_mask.sum() / padding_mask.size(0)
lm_loss = portion_unpadded * torch.mean(lm_losses * (padding_mask.view(-1).float()))
# Scale LM loss -- since it's so big
if args.aux_lm_loss_weight > 0.:
loss = loss + lm_loss * args.aux_lm_loss_weight
# Training
if LR is not None:
LR.optimizer.zero_grad()
loss.backward()
LR.optimizer.step()
LR.step()
# Remove loss from CUDA -- kill gradients and save memory.
total_loss += loss.detach().cpu().numpy()
if args.use_softmax:
labels_batch = onehot(labels_batch.squeeze(), model.out_dim)
class_out = onehot(clf_out.view(-1), int(model.out_dim/heads_per_class))
total_classifier_loss += classifier_loss.detach().cpu().numpy()
if args.aux_lm_loss:
total_lm_loss += lm_loss.detach().cpu().numpy()
if args.aux_head_variance_loss_weight > 0:
total_multihead_variance_loss += multihead_variance_loss.detach().cpu().numpy()
for j in range(int(model.out_dim/heads_per_class)):
std = None
if class_std is not None:
std = class_std[:,j]
info_dicts[j] = update_info_dict(info_dicts[j], labels_batch[:, j], class_out[:, j], thresholds[j], std=std)
# Save, for overall thresholding (not on training)
if threshold_validation and LR is None:
all_labels.append(labels_batch.detach().cpu().numpy())
all_batches.append(class_out.detach().cpu().numpy())
if class_std is not None:
all_stds.append(class_std.detach().cpu().numpy())
if threshold_validation and LR is None:
all_batches = np.concatenate(all_batches)
all_labels = np.concatenate(all_labels)
if heads_per_class > 1:
all_stds = np.concatenate(all_stds)
# Compute new thresholds -- per class
_, thresholds, _, _ = _binary_threshold(all_batches, all_labels, args.threshold_metric, args.micro, global_tweaks=args.global_tweaks)
info_dicts = [{'fp' : 0, 'tp' : 0, 'fn' : 0, 'tn' : 0, 'std' : 0.,
'metric' : args.report_metric, 'micro' : args.micro} for k in keys]
# In multihead case, look at class averages? Why? More predictive. Works especially well when we force single per-class threshold.
for j in range(int(model.out_dim/heads_per_class)):
std = None
if heads_per_class > 1:
std = all_stds[:, j]
info_dicts[j] = update_info_dict(info_dicts[j], all_labels[:, j], all_batches[:, j], thresholds[j], std=std)
# Metrics for all items -- with current best thresholds
total_metrics, class_metric_strs = get_metric_report(info_dicts, args, keys, LR)
# Show losses
if debug:
tqdm.write('losses -- total / classifier / LM / multihead_variance')
tqdm.write(total_loss * batch_adjustment)
tqdm.write(total_classifier_loss * batch_adjustment)
tqdm.write(total_lm_loss * batch_adjustment)
tqdm.write(total_multihead_variance_loss * batch_adjustment)
return total_loss.item() / (i + 1), total_metrics, class_metric_strs, thresholds
def onehot(sparse, nclasses):
rows = len(sparse)
rtn = torch.zeros(rows, math.floor(nclasses))
rtn[torch.arange(rows), sparse.squeeze().cpu()] = 1
return rtn
def get_metric_report(info_dicts, args, keys=['-'], LR=None):
class_metric_strs, total_metrics = [], []
report_metrics = ['jacc', 'acc', 'mcc', 'f1', 'recall', 'precision', 'var'] if args.all_metrics else [args.report_metric]
for m in report_metrics:
for d in info_dicts:
d.update({'metric' : m})
class_metrics = [get_metric(d) for d in info_dicts]
total_metrics.append(get_metric(info_dicts))
if LR is not None:
delim = '-'
else:
delim = {'mcc' : '#', 'f1' : '+', 'jacc' : '=', 'acc' : '>', 'var' : '%', 'recall': '<', 'precision':'~'}[m]
class_metric_strs.append(", ".join('{} {} {:5.2f}'.format(k, delim, f * 100) for k, f in zip(keys, class_metrics)))
return total_metrics, class_metric_strs
def generate_outputs(model, text, args, thresholds=None, debug=False):
model.eval()
collected_outputs = []
collected_labels = []
# Collect category standard deviations, across multiple heads
collected_outputs_std = []
for i, data in tqdm(enumerate(text), total=len(text), unit='batch', desc='predictions', position=1, ncols=100):
text_batch, labels_batch, length_batch = get_supervised_batch(data, args.cuda, model, args.max_seq_len, args, save_outputs=True, heads_per_class=args.heads_per_class)
class_out, (lm_out, _) = transform(model, text_batch, labels_batch, length_batch, args)
# Take the average per-category if requested
if args.heads_per_class > 1:
_, class_out, class_std, clf_out = class_out
else:
class_out, clf_out = class_out
if args.use_softmax:
class_out = F.softmax(class_out, -1)
class_std = torch.zeros(class_out.shape)
if args.thresh_test_preds or thresholds is not None:
class_out = clf_out
if args.use_softmax:
labels_batch = onehot(labels_batch.squeeze(), int(model.out_dim/args.heads_per_class)).cuda()
class_out = onehot(torch.max(clf_out, -1)[1].squeeze(), int(model.out_dim/args.heads_per_class))
collected_outputs.append(torch.tensor(class_out).cuda().float())
collected_labels.append(labels_batch)
collected_outputs_std.append(torch.tensor(class_std).cuda().float())
collected_outputs = torch.cat(collected_outputs, 0)
collected_outputs_std = torch.cat(collected_outputs_std, 0)
collected_labels = torch.cat(collected_labels, 0)
return collected_outputs, collected_labels, collected_outputs_std
def write_results(preds, labels, save):
labels_file = os.path.splitext(save)[0] + '_labels.txt'
# HACK -- handle both tensors and numpy arrays here:
if isinstance(preds, np.ndarray):
np.savetxt(save, preds.astype(int), delimiter=',')
np.savetxt(labels_file, labels.astype(int), delimiter=',')
else:
np.savetxt(save, preds.cpu().numpy().astype(int), delimiter=',')
np.savetxt(labels_file, labels.cpu().numpy().astype(int), delimiter=',')
def main():
(train_data, val_data, test_data), tokenizer, args = get_data_and_args()
# Print args for logging & reproduction. Need to know, including default args
if test_data is None:
test_data = val_data
model, optim, LR = get_model_and_optim(args, train_data)
# save_root = '' if args.load is None else args.load
# save_root = save_root.replace('.current', '')
# save_root = os.path.splitext(save_root)[0]
# save_root += '_transfer'
save_root = os.path.join('', args.model_version_name)
if not os.path.exists(save_root):
os.makedirs(save_root)
print('writing results to '+save_root)
def clf_reg_loss(reg_penalty=.125, order=1):
loss = 0
for p in model.classifier.parameters():
loss += torch.abs(p).sum()*reg_penalty
return loss
reg_loss = clf_reg_loss
init_params = list(model.lm_encoder.parameters())
if args.use_logreg:
def transform_for_logreg(model, data, args, desc='train'):
if data is None:
return None, None
X_out = []
Y_out = []
for i, batch in tqdm(enumerate(data), total=len(data), unit="batch", desc=desc, position=0, ncols=100):
text_batch, labels_batch, length_batch = get_supervised_batch(batch, args.cuda, model, args.max_seq_len, args, heads_per_class=args.heads_per_class)
# if args.non_binary_cols:
# labels_batch = labels_batch[:,0]-labels_batch[:,1]+1
_, (_, state) = transform(model, text_batch, labels_batch, length_batch, args)
X_out.append(state.cpu().numpy())
Y_out.append(labels_batch.cpu().numpy())
X_out = np.concatenate(X_out)
Y_out = np.concatenate(Y_out)
return X_out, Y_out
model.eval()
trX, trY = transform_for_logreg(model, train_data, args, desc='train')
vaX, vaY = transform_for_logreg(model, val_data, args, desc='val')
teX, teY = transform_for_logreg(model, test_data, args, desc='test')
logreg_model, logreg_scores, logreg_preds, c, nnotzero = train_logreg(trX, trY, vaX, vaY, teX, teY, eval_test=not args.no_test_eval,
report_metric=args.report_metric, threshold_metric=args.threshold_metric,
automatic_thresholding=args.automatic_thresholding, micro=args.micro)
print(', '.join([str(score) for score in logreg_scores]), 'train, val, test accuracy for all neuron regression')
print(str(c)+' regularization coefficient used')
print(str(nnotzero) + ' features used in all neuron regression\n')
else:
best_vaY = 0
vaT = [] # Current "best thresholds" so we can get reasonable estimates on training set
for e in tqdm(range(args.epochs), unit="epoch", desc="epochs", position=0, ncols=100):
if args.use_softmax:
vaT = []
save_outputs = False
report_metrics = ['jacc', 'acc','mcc', 'f1', 'recall', 'precision', 'var'] if args.all_metrics else [args.report_metric]
print_str = ""
trXt, trY, trC, _ = finetune(model, train_data, args, val_data=val_data, LR=LR, reg_loss=reg_loss, tqdm_desc='train', heads_per_class=args.heads_per_class, last_thresholds=vaT, threshold_validation=False)
data_str_base = "Train Loss: {:4.2f} Train {:5s} (All): {:5.2f}, Train Class {:5s}: {}"
for idx, m in enumerate(report_metrics):
data_str = data_str_base.format(trXt, m, trY[idx] * 100, m, trC[idx])
print_str += data_str + " " * max(0, 110 - len(data_str)) + "\n"
vaXt, vaY = None, None
if val_data is not None:
vaXt, vaY, vaC, vaT = finetune(model, val_data, args, tqdm_desc='val', heads_per_class=args.heads_per_class, last_thresholds=vaT)
# Take command line, for metric for which to measure best performance against.
# NOTE: F1, MCC, Jaccard are good measures. Accuracy is not -- since so skewed.
selection_metric = ['jacc', 'acc','mcc', 'f1', 'recall', 'precision', 'var'].index(args.threshold_metric)
avg_Y = vaY[selection_metric]
tqdm.write('avg '+args.threshold_metric+' metric '+str(avg_Y))
if avg_Y > best_vaY:
save_outputs = True
best_vaY = avg_Y
elif avg_Y == best_vaY and random.random() > 0.5:
save_outputs = True
best_vaY = avg_Y
data_str_base = "Val Loss: {:4.2f} Val {:5s} (All): {:5.2f}, Val Class {:5s}: {}"
for idx, m in enumerate(report_metrics):
data_str = data_str_base.format(vaXt, m, vaY[idx] * 100, m, vaC[idx])
print_str += data_str + " " * max(0, 110 - len(data_str)) + "\n"
tqdm.write(print_str[:-1])
teXt, teY = None, None
if test_data is not None:
# Hardcode -- enable to always save outputs [regardless of metrics]
# save_outputs = True
if save_outputs:
tqdm.write('performing test eval')
try:
with torch.no_grad():
if not args.no_test_eval:
auto_thresholds = None
dual_thresholds = None
# NOTE -- we manually threshold to F1 [not necessarily good]
V_pred, V_label, V_std = generate_outputs(model, val_data, args)
if args.automatic_thresholding:
if args.dual_thresh:
# get dual threshold (do not call auto thresholds)
# TODO: Handle multiple heads per class
_, dual_thresholds = _neutral_threshold_two_output(V_pred.cpu().numpy(), V_label.cpu().numpy())
model.set_thresholds(dual_thresholds, dual_threshold=args.dual_thresh and not args.joint_binary_train)
else:
# Use args.threshold_metric to choose which category to threshold on. F1 and Jaccard are good options
# NOTE: For multiple heads per class, can threshold each head (default) or single threshold. Little difference once model converges.
auto_thresholds = vaT
# _, auto_thresholds, _, _ = _binary_threshold(V_pred.view(-1, int(model.out_dim/args.heads_per_class)).contiguous(), V_label.view(-1, int(model.out_dim/args.heads_per_class)).contiguous(),
# args.threshold_metric, args.micro, global_tweaks=args.global_tweaks)
model.set_thresholds(auto_thresholds, args.double_thresh)
T_pred, T_label, T_std = generate_outputs(model, test_data, args, auto_thresholds)
if not args.use_softmax and int(model.out_dim/args.heads_per_class) > 1:
keys = list(args.non_binary_cols)
if args.dual_thresh:
if len(keys) == len(dual_thresholds):
tqdm.write('Dual thresholds: %s' % str(list(zip(keys, dual_thresholds))))
keys += ['neutral']
else:
tqdm.write('Class thresholds: %s' % str(list(zip(keys, auto_thresholds))))
elif args.use_softmax:
keys = [str(m) for m in range(model.out_dim)]
else:
tqdm.write('Class threshold: %s' % str([args.label_key, auto_thresholds[0]]))
keys = ['']
info_dicts = [{'fp' : 0, 'tp' : 0, 'fn' : 0, 'tn' : 0, 'std' : 0.,
'metric' : args.report_metric, 'micro' : True} for k in keys]
#perform dual threshold here, adding the neutral labels to T_label, thresholding existing predictions and adding neutral preds to T_Pred
if args.dual_thresh:
if dual_thresholds is None:
dual_thresholds = [.5, .5]
def make_onehot_w_neutral(label):
rtn = [0]*3
rtn[label] = 1
return rtn
def get_label(pos_neg):
thresholded = [pos_neg[0]>=dual_thresholds[0], pos_neg[1]>=dual_thresholds[1]]
if thresholded[0] == thresholded[1]:
return 2
return thresholded.index(1)
def get_new_std(std):
return std[0], std[1], (std[0]+std[1])/2
new_labels = []
new_preds = []
T_std = torch.cat([T_std[:,:2], T_std[:,:2].mean(-1).view(-1, 1)], -1).cpu().numpy()
for j, lab in enumerate(T_label):
pred = T_pred[j]
new_preds.append(make_onehot_w_neutral(get_label(pred)))
new_labels.append(make_onehot_w_neutral(get_label(lab)))
T_pred = np.array(new_preds)
T_label = np.array(new_labels)
# HACK: If dual threshold, hardcoded -- assume positive, negative and neutral -- in that order
# It's ok to train with other categories (after positive, neutral) as auxilary loss -- but won't calculate in test
if args.dual_thresh and args.joint_binary_train:
keys = ['positive', 'negative', 'neutral']
info_dicts = [{'fp' : 0, 'tp' : 0, 'fn' : 0, 'tn' : 0, 'std' : 0.,
'metric' : args.report_metric, 'micro' : True} for k in keys]
for j, k in enumerate(keys):
update_info_dict(info_dicts[j], T_pred[:,j], T_label[:,j], std=T_std[:,j])
total_metrics, metric_strings = get_metric_report(info_dicts, args, keys)
test_str = ''
test_str_base = "Test {:5s} (micro): {:5.2f}, Test Class {:5s}: {}"
for idx, m in enumerate(report_metrics):
data_str = test_str_base.format(m, total_metrics[idx] * 100, m, metric_strings[idx])
test_str += data_str + " " * max(0, 110 - len(data_str)) + "\n"
tqdm.write(test_str[:-1])
# tqdm.write(str(total_metrics))
# tqdm.write('; '.join(metric_strings))
else:
V_pred, V_label, V_std = generate_outputs(model, val_data, args)
T_pred, T_label, T_std = generate_outputs(model, test_data, args)
val_path = os.path.join(save_root, 'val_results.txt')
tqdm.write('Saving validation prediction results of size %s to %s' % (str(T_pred.shape[:]), val_path))
write_results(V_pred, V_label, val_path)
test_path = os.path.join(save_root, 'test_results.txt')
tqdm.write('Saving test prediction results of size %s to %s' % (str(T_pred.shape[:]), test_path))
write_results(T_pred, T_label, test_path)
except KeyboardInterrupt:
pass
else:
pass
# Save the model, upon request
if args.save_finetune and save_outputs:
# Save model if best so far. Note epoch number, and also keys [what is it predicting], as well as optional version number
# TODO: Add key string to handle multiple runs?
if args.non_binary_cols:
keys = list(args.non_binary_cols)
else:
keys = [args.label_key]
# Also save args
args_save_path = os.path.join(save_root, 'args.txt')
tqdm.write('Saving commandline to %s' % args_save_path)
with open(args_save_path, 'w') as f:
f.write(' '.join(sys.argv[1:]))
# Save and add thresholds to arguments for easy reloading of model config
if not args.no_test_eval and args.automatic_thresholding:
thresh_save_path = os.path.join(save_root, 'thresh'+'_ep'+str(e)+'.npy')
tqdm.write('Saving thresh to %s' % thresh_save_path)
if args.dual_thresh:
np.save(thresh_save_path, list(zip(keys, dual_thresholds)))
args.thresholds = list(zip(keys, dual_thresholds))
else:
np.save(thresh_save_path, list(zip(keys, auto_thresholds)))
args.thresholds = list(zip(keys, auto_thresholds))
else:
args.thresholds = None
args.classes = keys
#save full model with args to restore
clf_save_path = os.path.join(save_root, 'model'+'_ep'+str(e)+'.clf')
tqdm.write('Saving full classifier to %s' % clf_save_path)
torch.save({'sd': model.state_dict(), 'args': args}, clf_save_path)
if __name__ == "__main__":
main()
# python3 finetune.py --data csvs/SemEval-7k-processed-IDs.train.csv --valid csvs/SemEval-7k-processed-IDs.val.csv --test csvs/SemEval-7k-processed-IDs.test.csv --epochs 5 --text_key 32k-ids --ids --optim adam --data_size 32000 --aux-lm-loss --label_key label --all-metrics --automatic-thresholding --batch_size 24 --lr 1.73e-5 --model transformer --decoder-embed-dim 768 --decoder-ffn-embed-dim 3072 --decoder-layers 12 --load /home/adlr-sent.cosmos433/chkpts/tf-768emb-3072ffn-12x8head-learnedpos-32000parts-2cos-300/e170000.pt --decoder-learned-pos --use-final-embed --classifier-hidden-layers 8 --non-binary-cols csvs/cols/plutchik-cols.json --save-finetune