forked from NVIDIA/sentiment-discovery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharguments.py
302 lines (289 loc) · 20.9 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
###############################################################################
# BSD 3-Clause License
#
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Author & Contact: Raul Puri ([email protected])
###############################################################################
from configure_data import configure_data
def add_general_args(parser):
group = parser.add_argument_group('general', 'general purpose arguments')
group.add_argument('--model', type=str, default='mLSTM',
help='type of recurrent net (RNNTanh, RNNReLU, LSTM, mLSTM, GRU)')
group.add_argument('--lr', type=float, default=5e-4,
help='initial learning rate')
group.add_argument('--constant-decay', type=int, default=None,
help='number of iterations to decay LR over,' + \
' None means decay to zero over training')
group.add_argument('--clip', type=float, default=0,
help='gradient clipping')
group.add_argument('--epochs', type=int, default=1,
help='upper epoch limit')
group.add_argument('--tied', action='store_true',
help='tie the word embedding and softmax weights')
group.add_argument('--seed', type=int, default=1234,
help='random seed')
group.add_argument('--log-interval', type=int, default=100, metavar='N',
help='report interval')
group.add_argument('--save', type=str, default='lang_model.pt',
help='path to save the final model')
group.add_argument('--load', type=str, default=None,
help='path to a previously saved model checkpoint')
group.add_argument('--load-optim', action='store_true',
help='load most recent optimizer to resume training')
group.add_argument('--save-iters', type=int, default=10000, metavar='N',
help='save current model progress interval')
group.add_argument('--save-optim', action='store_true',
help='save most recent optimizer')
group.add_argument('--fp16', action='store_true',
help='Run model in pseudo-fp16 mode (fp16 storage fp32 math).')
group.add_argument('--dynamic-loss-scale', action='store_true',
help='Dynamically look for loss scalar for fp16 convergance help.')
group.add_argument('--no-weight-norm', action='store_true',
help='Add weight normalization to model.')
group.add_argument('--loss-scale', type=float, default=1,
help='Static loss scaling, positive power of 2 values can improve fp16 convergence.')
group.add_argument('--world-size', type=int, default=1,
help='number of distributed workers')
group.add_argument('--distributed-backend', default='gloo',
help='which backend to use for distributed training. One of [gloo, nccl]')
group.add_argument('--rank', type=int, default=-1,
help='distributed worker rank. Typically set automatically from multiproc.py')
group.add_argument('--optim', default='Adam',
help='One of PyTorch\'s optimizers (Adam, SGD, etc). Default: Adam')
group.add_argument('--chkpt-grad', action='store_true',
help='checkpoint gradients to allow for training with larger models and sequences')
group.add_argument('--multinode-init', action='store_true',
help='initialize multinode. Environment variables should be set as according to https://pytorch.org/docs/stable/distributed.html')
return parser
def add_unsupervised_data_args(parser):
data_config, data_group = configure_data(parser)
# Set unsupervised L2R language modeling option defaults
data_config.set_defaults(data_set_type='L2R', transpose=True)
data_group.set_defaults(split='100,1,1')
# Create unsupervised-L2R-specific options
group = parser.add_argument_group('language modeling data options')
group.add_argument('--seq-length', type=int, default=256,
help="Maximum sequence length to process (for unsupervised rec)")
group.add_argument('--eval-seq-length', type=int, default=256,
help="Maximum sequence length to process for evaluation")
group.add_argument('--lazy', action='store_true',
help='whether to lazy evaluate the data set')
group.add_argument('--persist-state', type=int, default=1,
help='0=reset state after every sample in a shard, 1=reset state after every shard, -1=never reset state')
group.add_argument('--train-iters', type=int, default=1000,
help="""number of iterations per epoch to run training for""")
group.add_argument('--eval-iters', type=int, default=100,
help="""number of iterations per epoch to run validation/test for""")
group.add_argument('--decay-style', type=str, default=None, choices=['constant', 'linear', 'cosine', 'exponential'],
help='one of constant(None), linear, cosine, or exponential')
group.add_argument('--stlr-cut-frac', type=float, default=None,
help='what proportion of iterations to peak the slanted triangular learning rate')
group.add_argument('--warmup', type=float, default=0,
help='percentage of data to warmup on (.03 = 3% of all training iters). Default 0')
return data_config, parser
def add_model_args(parser):
args, _ = parser.parse_known_args()
if args.model.lower() == 'transformer':
return add_transformer_args(parser)
else:
return add_recurrent_args(parser)
def add_recurrent_args(parser):
group = parser.add_argument_group('recurrent', 'arguments for building recurrent nets')
group.add_argument('--num-hidden-warmup', type=int, default=0,
help='number of times to conduct hidden state warmup passes through inputs to be used for transfer tasks')
group.add_argument('--emsize', type=int, default=64,
help='size of word embeddings')
group.add_argument('--nhid', type=int, default=4096,
help='number of hidden units per layer')
group.add_argument('--nlayers', type=int, default=1,
help='number of layers')
group.add_argument('--dropout', type=float, default=0.0,
help='dropout applied to layers (0 = no dropout)')
group.add_argument('--neural-alphabet', action='store_true',
help='whether to use the neural alphabet encoder structure')
group.add_argument('--alphabet-size', type=int, default=128,
help='number of letters in neural alphabet')
group.add_argument('--ncontext', type=int, default=2,
help='number of context characters used in neural alphabet encoder structure')
group.add_argument('--residuals', action='store_true',
help='whether to implement residual connections between stackedRNN layers')
return parser
def add_transformer_args(parser):
group = parser.add_argument_group('transformer', 'args for specifically building a transformer network')
group.add_argument('--dropout', type=float, default=0.1,
help='dropout probability -- transformer only')
group.add_argument('--attention-dropout', type=float, default=0.0,
help='dropout probability for attention weights -- transformer only')
group.add_argument('--relu-dropout', type=float, default=0.1,
help='dropout probability after ReLU in FFN -- transformer only')
#ignore the encoder args for transformer. That's meant for seq2seq transformer
group.add_argument('--encoder-embed-path', type=str, default=None,
help='path to pre-trained encoder embedding')
group.add_argument('--encoder-embed-dim', type=int, default=64, # originally 512 but 64 for char level
help='encoder embedding dimension')
group.add_argument('--encoder-ffn-embed-dim', type=int, default=256, # originally 2048 but scaled for char level
help='encoder embedding dimension for FFN')
group.add_argument('--encoder-layers', type=int, default=6,
help='num encoder layers')
group.add_argument('--encoder-attention-heads', type=int, default=8,
help='num encoder attention heads')
group.add_argument('--encoder-normalize-before', default=False, action='store_true',
help='apply layernorm before each encoder block')
group.add_argument('--encoder-learned-pos', default=False, action='store_true',
help='use learned positional embeddings in the encoder')
group.add_argument('--decoder-embed-path', type=str, default=None,
help='path to pre-trained decoder embedding')
group.add_argument('--decoder-embed-dim', type=int, default=64, # originally 512 but 64 for char level
help='decoder embedding dimension')
group.add_argument('--decoder-ffn-embed-dim', type=int, default=256, # originally 2048 but scaled for char level
help='decoder embedding dimension for FFN')
group.add_argument('--decoder-layers', type=int, default=6,
help='num decoder layers')
group.add_argument('--decoder-attention-heads', type=int, default=8,
help='num decoder attention heads')
group.add_argument('--decoder-learned-pos', default=False, action='store_true',
help='use learned positional embeddings in the decoder')
group.add_argument('--decoder-normalize-before', default=False, action='store_true',
help='apply layernorm before each decoder block')
group.add_argument('--share-decoder-input-output-embed', default=False, action='store_true',
help='share decoder input and output embeddings')
group.add_argument('--share-all-embeddings', default=False, action='store_true',
help='share encoder, decoder and output embeddings'
' (requires shared dictionary and embed dim)')
group.add_argument('--use-final-embed', action='store_true',
help='whether to use the final timestep embeddings as output of transformer (in classification)')
return parser
def add_classifier_model_args(parser):
group = parser.add_argument_group('classifier', 'arguments used in training a classifier on top of a language model')
group.add_argument('--max-seq-len', type=int, default=None,
help='maximum sequence length to use for classification. Transformer uses a lot of memory and needs shorter sequences.')
group.add_argument('--classifier-hidden-layers', default=None, nargs='+',
help='sizes of hidden layers for binary classifier on top of language model, so excluding the input layer and final "1"')
group.add_argument('--classifier-hidden-activation', type=str, default='PReLU',
help='[defaults to PReLU] activations used in hidden layers of MLP classifier (ReLU, Tanh, torch.nn module names)')
group.add_argument('--classifier-dropout', type=float, default=0.1,
help='Dropout in layers of MLP classifier')
group.add_argument('--all-layers', action='store_true',
help='if more than one layer is used, extract features from all layers, not just the last layer')
group.add_argument('--concat-max', action='store_true',
help='whether to concatenate max pools onto cell/hidden states of RNNFeaturizer')
group.add_argument('--concat-min', action='store_true',
help='whether to concatenate min pools onto cell/hidden states of RNNFeaturizer')
group.add_argument('--concat-mean', action='store_true',
help='whether to concatenate mean pools onto cell/hidden states of RNNFeaturizer')
group.add_argument('--get-hidden', action='store_true',
help='whether to use the hidden state (as opposed to cell state) as features for classifier')
group.add_argument('--neurons', default=1, type=int,
help='number of nenurons to extract as features')
group.add_argument('--heads-per-class', type=int, default=1,
help='set > 1 for multiple heads per class prediction (variance, regularlization)')
parser.add_argument('--use-softmax', action='store_true', help='use softmax for classification')
group.add_argument('--double-thresh', action='store_true',
help='whether to report all metrics at once')
group.add_argument('--dual-thresh', action='store_true',
help='for 2 columns positive and negative, thresholds classes s.t. positive, negative, neutral labels are available')
group.add_argument('--joint-binary-train', action='store_true',
help='Train with dual thresholded (positive/negative/neutral) classes and other normal binary classes.\
Arguments to non-binary-cols must be passed with positive negative classes first.\
Ex: `--non-binary-cols positive negative <other classes>`')
group.set_defaults(epochs=5)
return parser
def add_sentiment_transfer_args(parser):
data_config, data_group = configure_data(parser)
# Set transfer learning data option defaults
data_group.set_defaults(split='1.', data=['data/binary_sst/train.csv'])
data_group.set_defaults(valid=['data/binary_sst/val.csv'], test=['data/binary_sst/test.csv'])
# Create transfer-learning-specific options
group = parser.add_argument_group('sentiment_transfer', 'arguments used for sentiment_transfer script')
group.add_argument('--mcc', action='store_true',
help='whether to use the matthews correlation coefficient as a measure of accuracy (for CoLA)')
group.add_argument('--save-results', type=str, default='sentiment',
help='path to save intermediate and final results of transfer')
group.add_argument('--no-test-eval', action='store_true',
help='whether to not evaluate the test model (useful when your test set has no labels)')
group.add_argument('--write-results', type=str, default='',
help='write results of model on test (or train if none is specified) data to specified filepath ')
group.add_argument('--use-cached', action='store_true',
help='reuse cached featurizations from a previous run')
group.add_argument('--drop-neurons', action='store_true',
help='drop top neurons instead of keeping them')
return data_config, data_group, group, parser
def add_run_classifier_args(parser):
data_config, data_group = configure_data(parser)
# Set classification data option defaults
data_group.set_defaults(split='1.', data=['data/binary_sst/train.csv'])
data_group.set_defaults(shuffle=False)
# Create classification-specific options
group = parser.add_argument_group('run_classifier', 'arguments used for run classifier script')
group.add_argument('--save_probs', type=str, default='clf_results.npy',
help='path to save numpy of predicted probabilities')
group.add_argument('--write-results', type=str, default='',
help='path to location for CSV -- write results of model on data \
input strings + results and variances. Will not write if empty')
return data_config, data_group, group, parser
def add_finetune_classifier_args(parser):
data_config, data_group = configure_data(parser)
# Set finetuning data option defaults
data_group.set_defaults(split='1.', data=['data/binary_sst/train.csv'])
data_group.set_defaults(valid=['data/binary_sst/val.csv'], test=['data/binary_sst/test.csv'])
data_group.set_defaults(shuffle=True)
# Create finetuning-specific options
parser.set_defaults(get_hidden=True)
data_group.add_argument('--seq-length', type=int, default=256,
help="Maximum sequence length to process (for unsupervised rec)")
data_group.add_argument('--lazy', action='store_true',
help='whether to lazy evaluate the data set')
group = parser.add_argument_group('finetune_classifier', 'arguments used for finetune script')
group.add_argument('--use-logreg', action='store_true',
help='use scikitlearn logistic regression instead of finetuning whole classifier')
group.add_argument('--stlr-cut-frac', type=float, default=None,
help='what proportion of iterations to peak the slanted triangular learning rate')
group.add_argument('--cos-cut-frac', type=float, default=None,
help='what proportion of iterations to peak the cosine learning rate')
group.add_argument('--lr-decay', type=float, default=1.0,
help='amount to multiply lr by to decay every epoch')
group.add_argument('--momentum', type=float, default=0.0,
help='momentum for SGD')
group.add_argument('--weight-decay', type=float, default=0,
help='weight decay for MLP optimization')
group.add_argument('--freeze-lm', action='store_true',
help='keep lanuage model froze -- don\'t backprop to Transformer/RNN')
group.add_argument('--aux-lm-loss', action='store_true',
help='whether to use language modeling objective as aux loss')
group.add_argument('--aux-lm-loss-weight', type=float, default=1.0,
help='LM model weight -- NOTE: default is 1.0 for back compatible. Way too high -- reasonable around 0.02')
group.add_argument('--aux-head-variance-loss-weight', type=float, default=0,
help='Set above 0.0 to force heads to learn different final-layer embeddings. Reasonable value ~10.-100.')
group.add_argument('--use-class-multihead-average', action='store_true',
help='Use average output for multihead per class -- not necessary to use with --class-single-threshold [just average the thresholds]')
group.add_argument('--thresh-test-preds', type=str, default=None,
help='path to thresholds for test outputs')
group.add_argument('--report-metric', type=str, default='f1', choices=['jacc', 'acc', 'f1', 'mcc', 'precision', 'recall', 'var', 'all'],
help='what metric to report performance (save best model)')
group.add_argument('--all-metrics', action='store_true',
help='Overloads report metrics and reports all metrics at once')
group.add_argument('--threshold-metric', type=str, default='f1', choices=['jacc', 'acc', 'f1', 'mcc', 'precision', 'recall', 'var', 'all'],
help='which metric to use when choosing ideal thresholds?')
group.add_argument('--micro', action='store_true',
help='whether to use micro averaging for metrics')
group.add_argument('--global-tweaks', type=int, default=0,
help='HACK: Pass int (1000 for example) to tweak individual thresholds toward best global average [good for SemEval]. Will increase threshold on rare, hard to measure, categories.')
group.add_argument('--save-finetune', action='store_true',
help='save finetuned models at every epoch of finetuning')
group.add_argument('--model-version-name', type=str, default='classifier',
help='space to version model name -- for saving')
group.add_argument('--automatic-thresholding', action='store_true',
help='automatically select classification thresholds based on validation performance. \
(test results are also reported using the thresholds)')
group.add_argument('--no-test-eval', action='store_true',
help='Do not report test metrics, write test and val results to disk instead.')
group.add_argument('--decay-style', type=str, default=None, choices=['constant', 'linear', 'cosine', 'exponential'],
help='Learning rate decay, one of constant(None), linear, cosine, or exponential')
group.add_argument('--warmup-epochs', type=float, default=0.,
help='number of epochs to warm up learning rate over.')
group.add_argument('--decay-epochs', type=float, default=-1,
help='number of epochs to decay for. If -1 decays for all of training')
group.add_argument('--load-finetuned', action='store_true',
help='load not just the language model but a previously finetuned full classifier checkpoint')
return data_config, data_group, group, parser