This repository has been archived by the owner on Jul 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmaintenance.py
131 lines (110 loc) · 4.43 KB
/
maintenance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""Maintenance scripts
These scripts are isolated from ``main.py`` to reduce the package dependencies
when running under AWS Lambda.
This module avoids non-stdlib imports to work cleanly in AWS Lambda. Using the
functions in the db module would be cleaner but autopush uses boto2, while
AWS Lambda uses Boto 3. The db module also has additional imports requiring
substantially more packages.
The IAM execution context should have a policy similar to the following to
ensure it can read/write DynamoDB properly:
..
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents"
],
"Resource": "arn:aws:logs:*:*:*"
},
{
"Sid": "ListAndCreateAndDescribeAllTables",
"Effect": "Allow",
"Action": [
"dynamodb:ListTables",
"dynamodb:DescribeTable",
"dynamodb:CreateTable",
"dynamodb:UpdateTable"
],
"Resource": "arn:aws:dynamodb:*:*:table/*"
}
]
}
"""
import datetime
import boto3
# Change when deploying under Lambda
MESSAGE_TABLE_PREFIX = "message"
REGION = "us-east-1"
dynamodb = boto3.resource('dynamodb', region_name=REGION)
client = boto3.client('dynamodb', region_name=REGION)
paginator = client.get_paginator('list_tables')
def get_month(delta=0):
"""Basic helper function to get a datetime.date object iterations months
ahead/behind of now."""
new = last = datetime.date.today()
# Move until we hit a new month, this avoids having to manually
# check year changes as we push forward or backward since the Python
# timedelta math handles it for us
for _ in range(abs(delta)):
while new.month == last.month:
if delta < 0:
new -= datetime.timedelta(days=14)
else:
new += datetime.timedelta(days=14)
last = new
return new
def make_rotating_tablename(prefix, delta=0):
"""Creates a tablename for table rotation based on a prefix with a given
month delta."""
date = get_month(delta=delta)
return "{}_{:04d}_{:02d}".format(prefix, date.year, date.month)
def table_exists(tablename):
"""Determine if the specified Table exists"""
query = "contains(TableNames, {!r})".format(tablename)
return any(paginator.paginate().search(query))
def table_maintenance(event, context):
"""AWS Lambda function for ensuring the appropriate message table is
available for the next month
This function will create a table for the month, and copy the read/write
units provisioned over to it.
If the next table's month already exists, this script will check and ensure
the read/write units match this months.
"""
# Get the current provisioned limits for this months table
cur_mth_tbl = dynamodb.Table(make_rotating_tablename(MESSAGE_TABLE_PREFIX))
limits = cur_mth_tbl.provisioned_throughput
read_units = limits["ReadCapacityUnits"]
write_units = limits["WriteCapacityUnits"]
# Determine if we are making the table or just verifying limits
nxt_mth_tblname = make_rotating_tablename(MESSAGE_TABLE_PREFIX, delta=1)
if table_exists(nxt_mth_tblname):
# Verify table units
nxt_mth_tbl = dynamodb.Table(nxt_mth_tblname)
nxt_limits = nxt_mth_tbl.provisioned_throughput
if nxt_limits["ReadCapacityUnits"] != read_units or \
nxt_limits["WriteCapacityUnits"] != write_units:
nxt_mth_tbl.update(ProvisionedThroughput={
"ReadCapacityUnits": read_units,
"WriteCapacityUnits": write_units
})
else:
# Create the new table
client.create_table(
AttributeDefinitions=[
{"AttributeName": "uaid", "AttributeType": "S"},
{"AttributeName": "chidmessageid", "AttributeType": "S"}
],
TableName=nxt_mth_tblname,
KeySchema=[
{"AttributeName": "uaid", "KeyType": "HASH"},
{"AttributeName": "chidmessageid", "KeyType": "RANGE"}
],
ProvisionedThroughput={
"ReadCapacityUnits": read_units,
"WriteCapacityUnits": write_units
}
)