forked from openvinotoolkit/openvino_notebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoder.py
262 lines (236 loc) · 11.6 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
# code from https://github.com/openvinotoolkit/open_model_zoo/blob/9296a3712069e688fe64ea02367466122c8e8a3b/demos/common/python/models/open_pose.py#L135
class OpenPoseDecoder:
BODY_PARTS_KPT_IDS = ((1, 2), (1, 5), (2, 3), (3, 4), (5, 6), (6, 7), (1, 8), (8, 9), (9, 10), (1, 11),
(11, 12), (12, 13), (1, 0), (0, 14), (14, 16), (0, 15), (15, 17), (2, 16), (5, 17))
BODY_PARTS_PAF_IDS = (12, 20, 14, 16, 22, 24, 0, 2, 4, 6, 8, 10, 28, 30, 34, 32, 36, 18, 26)
def __init__(self, num_joints=18, skeleton=BODY_PARTS_KPT_IDS, paf_indices=BODY_PARTS_PAF_IDS,
max_points=100, score_threshold=0.1, min_paf_alignment_score=0.05, delta=0.5):
self.num_joints = num_joints
self.skeleton = skeleton
self.paf_indices = paf_indices
self.max_points = max_points
self.score_threshold = score_threshold
self.min_paf_alignment_score = min_paf_alignment_score
self.delta = delta
self.points_per_limb = 10
self.grid = np.arange(self.points_per_limb, dtype=np.float32).reshape(1, -1, 1)
def __call__(self, heatmaps, nms_heatmaps, pafs):
batch_size, _, h, w = heatmaps.shape
assert batch_size == 1, 'Batch size of 1 only supported'
keypoints = self.extract_points(heatmaps, nms_heatmaps)
pafs = np.transpose(pafs, (0, 2, 3, 1))
if self.delta > 0:
for kpts in keypoints:
kpts[:, :2] += self.delta
np.clip(kpts[:, 0], 0, w - 1, out=kpts[:, 0])
np.clip(kpts[:, 1], 0, h - 1, out=kpts[:, 1])
pose_entries, keypoints = self.group_keypoints(keypoints, pafs, pose_entry_size=self.num_joints + 2)
poses, scores = self.convert_to_coco_format(pose_entries, keypoints)
if len(poses) > 0:
poses = np.asarray(poses, dtype=np.float32)
poses = poses.reshape((poses.shape[0], -1, 3))
else:
poses = np.empty((0, 17, 3), dtype=np.float32)
scores = np.empty(0, dtype=np.float32)
return poses, scores
def extract_points(self, heatmaps, nms_heatmaps):
batch_size, channels_num, h, w = heatmaps.shape
assert batch_size == 1, 'Batch size of 1 only supported'
assert channels_num >= self.num_joints
xs, ys, scores = self.top_k(nms_heatmaps)
masks = scores > self.score_threshold
all_keypoints = []
keypoint_id = 0
for k in range(self.num_joints):
# Filter low-score points.
mask = masks[0, k]
x = xs[0, k][mask].ravel()
y = ys[0, k][mask].ravel()
score = scores[0, k][mask].ravel()
n = len(x)
if n == 0:
all_keypoints.append(np.empty((0, 4), dtype=np.float32))
continue
# Apply quarter offset to improve localization accuracy.
x, y = self.refine(heatmaps[0, k], x, y)
np.clip(x, 0, w - 1, out=x)
np.clip(y, 0, h - 1, out=y)
# Pack resulting points.
keypoints = np.empty((n, 4), dtype=np.float32)
keypoints[:, 0] = x
keypoints[:, 1] = y
keypoints[:, 2] = score
keypoints[:, 3] = np.arange(keypoint_id, keypoint_id + n)
keypoint_id += n
all_keypoints.append(keypoints)
return all_keypoints
def top_k(self, heatmaps):
N, K, _, W = heatmaps.shape
heatmaps = heatmaps.reshape(N, K, -1)
# Get positions with top scores.
ind = heatmaps.argpartition(-self.max_points, axis=2)[:, :, -self.max_points:]
scores = np.take_along_axis(heatmaps, ind, axis=2)
# Keep top scores sorted.
subind = np.argsort(-scores, axis=2)
ind = np.take_along_axis(ind, subind, axis=2)
scores = np.take_along_axis(scores, subind, axis=2)
y, x = np.divmod(ind, W)
return x, y, scores
@staticmethod
def refine(heatmap, x, y):
h, w = heatmap.shape[-2:]
valid = np.logical_and(np.logical_and(x > 0, x < w - 1), np.logical_and(y > 0, y < h - 1))
xx = x[valid]
yy = y[valid]
dx = np.sign(heatmap[yy, xx + 1] - heatmap[yy, xx - 1], dtype=np.float32) * 0.25
dy = np.sign(heatmap[yy + 1, xx] - heatmap[yy - 1, xx], dtype=np.float32) * 0.25
x = x.astype(np.float32)
y = y.astype(np.float32)
x[valid] += dx
y[valid] += dy
return x, y
@staticmethod
def is_disjoint(pose_a, pose_b):
pose_a = pose_a[:-2]
pose_b = pose_b[:-2]
return np.all(np.logical_or.reduce((pose_a == pose_b, pose_a < 0, pose_b < 0)))
def update_poses(self, kpt_a_id, kpt_b_id, all_keypoints, connections, pose_entries, pose_entry_size):
for connection in connections:
pose_a_idx = -1
pose_b_idx = -1
for j, pose in enumerate(pose_entries):
if pose[kpt_a_id] == connection[0]:
pose_a_idx = j
if pose[kpt_b_id] == connection[1]:
pose_b_idx = j
if pose_a_idx < 0 and pose_b_idx < 0:
# Create new pose entry.
pose_entry = np.full(pose_entry_size, -1, dtype=np.float32)
pose_entry[kpt_a_id] = connection[0]
pose_entry[kpt_b_id] = connection[1]
pose_entry[-1] = 2
pose_entry[-2] = np.sum(all_keypoints[connection[0:2], 2]) + connection[2]
pose_entries.append(pose_entry)
elif pose_a_idx >= 0 and pose_b_idx >= 0 and pose_a_idx != pose_b_idx:
# Merge two poses are disjoint merge them, otherwise ignore connection.
pose_a = pose_entries[pose_a_idx]
pose_b = pose_entries[pose_b_idx]
if self.is_disjoint(pose_a, pose_b):
pose_a += pose_b
pose_a[:-2] += 1
pose_a[-2] += connection[2]
del pose_entries[pose_b_idx]
elif pose_a_idx >= 0 and pose_b_idx >= 0:
# Adjust score of a pose.
pose_entries[pose_a_idx][-2] += connection[2]
elif pose_a_idx >= 0:
# Add a new limb into pose.
pose = pose_entries[pose_a_idx]
if pose[kpt_b_id] < 0:
pose[-2] += all_keypoints[connection[1], 2]
pose[kpt_b_id] = connection[1]
pose[-2] += connection[2]
pose[-1] += 1
elif pose_b_idx >= 0:
# Add a new limb into pose.
pose = pose_entries[pose_b_idx]
if pose[kpt_a_id] < 0:
pose[-2] += all_keypoints[connection[0], 2]
pose[kpt_a_id] = connection[0]
pose[-2] += connection[2]
pose[-1] += 1
return pose_entries
@staticmethod
def connections_nms(a_idx, b_idx, affinity_scores):
# From all retrieved connections that share starting/ending keypoints leave only the top-scoring ones.
order = affinity_scores.argsort()[::-1]
affinity_scores = affinity_scores[order]
a_idx = a_idx[order]
b_idx = b_idx[order]
idx = []
has_kpt_a = set()
has_kpt_b = set()
for t, (i, j) in enumerate(zip(a_idx, b_idx)):
if i not in has_kpt_a and j not in has_kpt_b:
idx.append(t)
has_kpt_a.add(i)
has_kpt_b.add(j)
idx = np.asarray(idx, dtype=np.int32)
return a_idx[idx], b_idx[idx], affinity_scores[idx]
def group_keypoints(self, all_keypoints_by_type, pafs, pose_entry_size=20):
all_keypoints = np.concatenate(all_keypoints_by_type, axis=0)
pose_entries = []
# For every limb.
for part_id, paf_channel in enumerate(self.paf_indices):
kpt_a_id, kpt_b_id = self.skeleton[part_id]
kpts_a = all_keypoints_by_type[kpt_a_id]
kpts_b = all_keypoints_by_type[kpt_b_id]
n = len(kpts_a)
m = len(kpts_b)
if n == 0 or m == 0:
continue
# Get vectors between all pairs of keypoints, i.e. candidate limb vectors.
a = kpts_a[:, :2]
a = np.broadcast_to(a[None], (m, n, 2))
b = kpts_b[:, :2]
vec_raw = (b[:, None, :] - a).reshape(-1, 1, 2)
# Sample points along every candidate limb vector.
steps = (1 / (self.points_per_limb - 1) * vec_raw)
points = steps * self.grid + a.reshape(-1, 1, 2)
points = points.round().astype(dtype=np.int32)
x = points[..., 0].ravel()
y = points[..., 1].ravel()
# Compute affinity score between candidate limb vectors and part affinity field.
part_pafs = pafs[0, :, :, paf_channel:paf_channel + 2]
field = part_pafs[y, x].reshape(-1, self.points_per_limb, 2)
vec_norm = np.linalg.norm(vec_raw, ord=2, axis=-1, keepdims=True)
vec = vec_raw / (vec_norm + 1e-6)
affinity_scores = (field * vec).sum(-1).reshape(-1, self.points_per_limb)
valid_affinity_scores = affinity_scores > self.min_paf_alignment_score
valid_num = valid_affinity_scores.sum(1)
affinity_scores = (affinity_scores * valid_affinity_scores).sum(1) / (valid_num + 1e-6)
success_ratio = valid_num / self.points_per_limb
# Get a list of limbs according to the obtained affinity score.
valid_limbs = np.where(np.logical_and(affinity_scores > 0, success_ratio > 0.8))[0]
if len(valid_limbs) == 0:
continue
b_idx, a_idx = np.divmod(valid_limbs, n)
affinity_scores = affinity_scores[valid_limbs]
# Suppress incompatible connections.
a_idx, b_idx, affinity_scores = self.connections_nms(a_idx, b_idx, affinity_scores)
connections = list(zip(kpts_a[a_idx, 3].astype(np.int32),
kpts_b[b_idx, 3].astype(np.int32),
affinity_scores))
if len(connections) == 0:
continue
# Update poses with new connections.
pose_entries = self.update_poses(kpt_a_id, kpt_b_id, all_keypoints,
connections, pose_entries, pose_entry_size)
# Remove poses with not enough points.
pose_entries = np.asarray(pose_entries, dtype=np.float32).reshape(-1, pose_entry_size)
pose_entries = pose_entries[pose_entries[:, -1] >= 3]
return pose_entries, all_keypoints
@staticmethod
def convert_to_coco_format(pose_entries, all_keypoints):
num_joints = 17
coco_keypoints = []
scores = []
for pose in pose_entries:
if len(pose) == 0:
continue
keypoints = np.zeros(num_joints * 3)
reorder_map = [0, -1, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]
person_score = pose[-2]
for keypoint_id, target_id in zip(pose[:-2], reorder_map):
if target_id < 0:
continue
cx, cy, score = 0, 0, 0 # keypoint not found
if keypoint_id != -1:
cx, cy, score = all_keypoints[int(keypoint_id), 0:3]
keypoints[target_id * 3 + 0] = cx
keypoints[target_id * 3 + 1] = cy
keypoints[target_id * 3 + 2] = score
coco_keypoints.append(keypoints)
scores.append(person_score * max(0, (pose[-1] - 1))) # -1 for 'neck'
return np.asarray(coco_keypoints), np.asarray(scores)