-
Notifications
You must be signed in to change notification settings - Fork 1
/
sd_coco.py
207 lines (185 loc) · 5.86 KB
/
sd_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import argparse
import os
import pathlib
import random
import numpy as np
import torch
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.util import instantiate_from_config
from omegaconf import OmegaConf
from torch.multiprocessing import cpu_count, spawn
from torchvision.io import write_png
from tqdm import trange
def load_model_from_config(config, ckpt, verbose=False):
ckpt = pathlib.Path(ckpt).absolute()
print(f"Loading model from {ckpt}")
with ckpt.open("rb") as f:
pl_sd = torch.load(f, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
@torch.inference_mode()
def _main(opt, data, model, sampler, rank):
batch_size = len(data)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
sample_path = outpath
os.makedirs(sample_path, exist_ok=True)
start_code = None
outer_loop = trange(opt.n_iter, desc="Sampling") if rank == 0 else range(opt.n_iter)
with model.ema_scope():
for _ in outer_loop:
idx = [i for i, d in data]
prompts = [d for i, d in data]
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _ = sampler.sample(
S=opt.ddim_steps,
conditioning=c,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code,
)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
for id, x_sample in zip(idx, x_samples_ddim):
write_png((255 * x_sample.cpu()).to(torch.uint8), os.path.join(sample_path, f"{id:05}.png"))
def main(rank):
print(f"setup {rank=}")
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render",
)
parser.add_argument(
"--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples"
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action="store_true",
help="use plms sampling",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=3,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v1-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/ldm/stable-diffusion-v1/model.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast"
)
opt = parser.parse_args()
torch.manual_seed(opt.seed)
random.seed(opt.seed)
np.random.seed(opt.seed)
torch.cuda.set_device(rank)
torch.set_num_threads(2 * cpu_count() // torch.cuda.device_count())
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
if opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
with open("coco_caption_train.txt", "r") as f:
captions = f.read().splitlines()
size = len(captions) // torch.cuda.device_count()
captions = list(enumerate(captions))
captions = captions[rank * size : (rank + 1) * size]
for idx in range(len(captions) // opt.n_samples):
data = captions[idx * opt.n_samples : (idx + 1) * opt.n_samples]
_main(opt, data, model, sampler, rank)
if __name__ == "__main__":
spawn(main, nprocs=torch.cuda.device_count())