-
Notifications
You must be signed in to change notification settings - Fork 71
/
utils.py
66 lines (47 loc) · 1.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import logging
import os
import random
import numpy as np
import torch
from transformers import BertTokenizer
from official_eval import official_f1
ADDITIONAL_SPECIAL_TOKENS = ["<e1>", "</e1>", "<e2>", "</e2>"]
def get_label(args):
return [label.strip() for label in open(os.path.join(args.data_dir, args.label_file), "r", encoding="utf-8")]
def load_tokenizer(args):
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
tokenizer.add_special_tokens({"additional_special_tokens": ADDITIONAL_SPECIAL_TOKENS})
return tokenizer
def write_prediction(args, output_file, preds):
"""
For official evaluation script
:param output_file: prediction_file_path (e.g. eval/proposed_answers.txt)
:param preds: [0,1,0,2,18,...]
"""
relation_labels = get_label(args)
with open(output_file, "w", encoding="utf-8") as f:
for idx, pred in enumerate(preds):
f.write("{}\t{}\n".format(8001 + idx, relation_labels[pred]))
def init_logger():
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.no_cuda and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def compute_metrics(preds, labels):
assert len(preds) == len(labels)
return acc_and_f1(preds, labels)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels, average="macro"):
acc = simple_accuracy(preds, labels)
return {
"acc": acc,
"f1": official_f1(),
}