-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsed.py
executable file
·41 lines (39 loc) · 1.44 KB
/
sed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import pandas as pd
import os
#@interact
#def result_selector(gtf=os.listdir(f'{rootFolder}/metadata/')):
import SED.my_eval
gtf='public.tsv'
rootFolder='/workspace/sed2020/'
typ=gtf.split('.')[0]
gtf=f'{rootFolder}/metadata/{gtf}'
# meta_dur_df=pd.DataFrame(columns=['filename','duration'])
# meta_dur_df['filename']=groundtruth['filename']
# meta_dur_df['duration']=10
total_dic={}
for team in sorted(os.listdir(f'{rootFolder}/submissions/')):
print(f'analysing team {team}')
for code in sorted(os.listdir(f'{rootFolder}/submissions/{team}')):
print(f' {code}')
base_prediction_path=f'{rootFolder}/submissions/{team}/{code}/{typ}/'
pef = f'{base_prediction_path}/{code}.output.tsv'
if not(os.path.isfile(pef)):
all=[x for x in os.listdir(base_prediction_path) if '.output.tsv' in x]
if len(all)>0:
pef=f'{base_prediction_path}/{all[0]}'
else:
print(pef)
continue
title=code.replace('_task4','')
res1=SED.my_eval.get_single_result(gtf,pef)
total_dic[title]={c:res1[c].loc['macro-avg']['f1'] for c in res1.keys() if c!='gem'}
if('gem' in res1):
for k in res1['gem'].keys():
total_dic[title][f'gem-{k}']=res1['gem'].loc['avg'][k]
# break
# break
total=pd.DataFrame(total_dic).T
total['y']=total.index
import general.utils
general.utils.saveState(total,'total')