-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
307 lines (253 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
import json
import math
import sys
from typing import Iterable
import argparse
import time
import datetime
from util import dist
from torch.utils.data import DataLoader, DistributedSampler
from collections import namedtuple
from functools import reduce
import pickle
from dataset import VideoQA_Dataset, videoqa_collate_fn
from args import get_args_parser
from util.misc import get_mask, adjust_learning_rate
from util.metrics import MetricLogger
from transformers import DebertaV2Tokenizer
from model import DebertaV2ForMaskedLM
def train_one_epoch(model: torch.nn.Module, tokenizer, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int,
dataset_name, args, max_norm: float = 0):
model.train()
edge_index = data_loader.dataset.edge_index.to(device)
vocab_embeddings = data_loader.dataset.vocab_embeddings.to(device)
eps = data_loader.dataset.eps[:, None].to(device)
metric_logger = MetricLogger(delimiter=" ")
header = "Epoch: [{}]".format(epoch)
num_training_steps = int(len(data_loader) * args.epochs)
args.print_freq = int(len(data_loader) / 4)
for i_batch, batch_dict in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
video = batch_dict["video"].to(device)
video_len = batch_dict["video_len"]
video_mask = get_mask(video_len, video.size(1)).to(device)
text = batch_dict["text"]
encoded = tokenizer(text, add_special_tokens=True, max_length=args.max_tokens, padding="longest", truncation=True, return_tensors="pt")
inputs = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device)
# forward
answer_id = batch_dict["answer_id"].to(device)
output = model(video=video, video_mask=video_mask, input_ids=inputs, attention_mask=attention_mask, edge_index=edge_index, vocab_embeddings=vocab_embeddings, eps=eps)
delay = args.max_feats if args.use_video else 0
logits = output['logits']
logits = logits[:, delay:encoded["input_ids"].size(1) + delay][encoded["input_ids"] == tokenizer.mask_token_id]
if dataset_name == "ivqa":
a = (answer_id / 2).clamp(max=1)
nll = -F.log_softmax(logits, 1, _stacklevel=5)
loss = (nll * a / a.sum(1, keepdim=True).clamp(min=1)).sum(dim=1).mean()
elif dataset_name == "vqa":
a = (answer_id / 3).clamp(max=1)
nll = -F.log_softmax(logits, 1, _stacklevel=5)
loss = (nll * a / a.sum(1, keepdim=True).clamp(min=1)).sum(dim=1).mean()
else:
loss = F.cross_entropy(logits, answer_id)
loss_dict = {"cls_loss": loss}
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = dist.reduce_dict(loss_dict)
loss_reduced = sum(loss_dict_reduced.values())
loss_value = loss_reduced.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
loss.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
adjust_learning_rate(optimizer, curr_step=epoch * len(data_loader) + i_batch, num_training_steps=num_training_steps, args=args)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model: torch.nn.Module, tokenizer, data_loader, device: torch.device, dataset_name, args, thresholds=[1, 10], split="test", epoch=-1):
model.eval()
ans2cat = data_loader.dataset.ans2cat
class_tensor = torch.zeros((len(data_loader.dataset.ans2id), 2), dtype=torch.float64, device="cuda")
edge_index = data_loader.dataset.edge_index.to(device)
vocab_embeddings = data_loader.dataset.vocab_embeddings.to(device)
eps = data_loader.dataset.eps[:, None].to(device)
metric_logger = MetricLogger(delimiter=" ")
metric_logger.update(n=0, base=0)
metric_logger.update(n=0, common=0)
metric_logger.update(n=0, rare=0)
metric_logger.update(n=0, unseen=0)
metric_logger.update(n=0, total=0)
header = f"{split}:"
args.print_freq = int(len(data_loader) / 4)
for i_batch, batch_dict in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
video = batch_dict["video"].to(device)
video_len = batch_dict["video_len"]
video_mask = get_mask(video_len, video.size(1)).to(device)
text = batch_dict["text"]
encoded = tokenizer(text, add_special_tokens=True, max_length=args.max_tokens, padding="longest", truncation=True, return_tensors="pt")
input_ids = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device)
if not args.suffix and not args.use_context: # remove sep token if not using the suffix
attention_mask[input_ids == tokenizer.sep_token_id] = 0
input_ids[input_ids == tokenizer.sep_token_id] = tokenizer.pad_token_id
answer_id, qids = batch_dict["answer_id"].to(device), batch_dict["qid"]
output = model(video=video, video_mask=video_mask, input_ids=input_ids, attention_mask=attention_mask, edge_index=edge_index, vocab_embeddings=vocab_embeddings, eps=eps)
logits = output["logits"]
delay = args.max_feats if args.use_video else 0
logits = logits[:, delay:encoded["input_ids"].size(1) + delay][encoded["input_ids"] == tokenizer.mask_token_id] # get the prediction on the mask token
logits = logits.softmax(-1)
topk_logits, topk_aids = torch.topk(logits, max(thresholds), -1)
types = batch_dict["type"]
original_answers = batch_dict['original_answer']
for i, (p, ans) in enumerate(zip(answer_id == logits.max(1).indices, original_answers)):
category = ans2cat[ans]
class_tensor[answer_id[i]][0] += p.float().item()
class_tensor[answer_id[i]][1] += 1.
if category == 'base':
metric_logger.update(n=1, base=p.float().item())
elif category == 'common':
metric_logger.update(n=1, common=p.float().item())
elif category == 'rare':
metric_logger.update(n=1, rare=p.float().item())
elif category == 'unseen':
metric_logger.update(n=1, unseen=p.float().item())
metric_logger.update(n=1, total=p.float().item())
torch.distributed.barrier()
torch.distributed.all_reduce(class_tensor)
macc = (class_tensor[:, 0] / class_tensor[:, 1]).mean().item()
metric_logger.synchronize_between_processes()
metric_logger.update(n=1, macc=macc)
print("Averaged stats:", metric_logger)
results = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
return results
def main(args):
# Init distributed mode
dist.init_distributed_mode(args)
if dist.is_main_process():
if args.save_dir and not (os.path.isdir(args.save_dir)):
os.makedirs(os.path.join(args.save_dir), exist_ok=True)
print(args)
device = torch.device(args.device)
# Fix seeds
seed = args.seed + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Build model
tokenizer = DebertaV2Tokenizer.from_pretrained(args.model_name, local_files_only=True)
dataset_test = VideoQA_Dataset(args, tokenizer, "test")
sampler_test = DistributedSampler(dataset_test, shuffle=False) if args.distributed else torch.utils.data.SequentialSampler(dataset_test)
dataloader_test = DataLoader(dataset_test, batch_size=args.batch_size_test, sampler=sampler_test, collate_fn=videoqa_collate_fn, num_workers=args.num_workers)
if not args.eval:
dataset_train = VideoQA_Dataset(args, tokenizer, 'train')
sampler_train = DistributedSampler(dataset_train) if args.distributed else torch.utils.data.RandomSampler(dataset_train)
dataloader_train = DataLoader(dataset_train, batch_size=args.batch_size, sampler=sampler_train, collate_fn=videoqa_collate_fn, num_workers=args.num_workers)
args.n_ans = len(dataloader_test.dataset.ans2id)
model = DebertaV2ForMaskedLM.from_pretrained(features_dim=args.features_dim if args.use_video else 0, max_feats=args.max_feats, freeze_lm=args.freeze_lm,
freeze_mlm=args.freeze_mlm, ft_ln=args.ft_ln, ds_factor_attn=args.ds_factor_attn, ds_factor_ff=args.ds_factor_ff,
dropout=args.dropout, n_ans=args.n_ans, freeze_last=args.freeze_last, pretrained_model_name_or_path=args.model_name,
local_files_only=True, args=args)
model.to(device)
total_parameters = sum(p.numel() for p in model.parameters())
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'Total params: {total_parameters:,}')
print(f'Trained params: {n_parameters:,}')
# Set up optimizer
params_for_optimization = list(p for n, p in model.named_parameters() if (p.requires_grad and 'gat' not in n))
answer_params_for_optimization = list(p for n, p in model.named_parameters() if (p.requires_grad and 'gat' in n))
optimizer = torch.optim.Adam([{"params": params_for_optimization, "lr": args.lr}, {"params": answer_params_for_optimization, "lr": args.lr}],
lr=args.lr, betas=(args.beta1, args.beta2), weight_decay=args.weight_decay)
# Load pretrained checkpoint
if args.load:
print("loading from", args.load)
checkpoint = torch.load(args.load, map_location="cpu")
if 'model' in checkpoint.keys():
model.load_state_dict(checkpoint['model'], strict=False)
else:
model.load_state_dict(checkpoint, strict=False)
if args.resume and not args.eval:
optimizer.load_state_dict(checkpoint["optimizer"])
args.start_epoch = checkpoint["epoch"] + 1
if not args.eval:
train_aid2tokid = torch.zeros(len(dataloader_train.dataset.ans2id), args.max_atokens).long()
for a, aid in dataloader_train.dataset.ans2id.items():
tok = torch.tensor(tokenizer(a, add_special_tokens=False, max_length=args.max_atokens, truncation=True, padding="max_length")["input_ids"], dtype=torch.long)
train_aid2tokid[aid] = tok
print(f'Training Vocab : {len(train_aid2tokid)}')
print(f'Training Samples : {len(dataloader_train.dataset)}')
test_aid2tokid = torch.zeros(len(dataloader_test.dataset.ans2id), args.max_atokens).long()
for a, aid in dataloader_test.dataset.ans2id.items():
tok = torch.tensor(tokenizer(a, add_special_tokens=False, max_length=args.max_atokens, truncation=True, padding="max_length")["input_ids"], dtype=torch.long)
test_aid2tokid[aid] = tok
print(f'Test Vocab : {len(test_aid2tokid)}')
print(f'Test Samples : {len(dataloader_test.dataset)}')
if not args.eval:
print("Start training")
start_time = time.time()
best_epoch = args.start_epoch
best_acc = 0
for epoch in range(args.start_epoch, args.epochs):
print(f"Starting epoch {epoch}")
if args.distributed:
sampler_train.set_epoch(epoch)
model.set_answer_embeddings(train_aid2tokid.to(model.device), freeze_last=args.freeze_last)
train_stats = train_one_epoch(model=model, tokenizer=tokenizer, data_loader=dataloader_train, optimizer=optimizer, device=device, epoch=epoch,
dataset_name=args.dataset, args=args, max_norm=args.clip_max_norm)
if (epoch + 1) % args.eval_skip == 0:
print(f"Validating {args.dataset}")
val_stats = {}
model.set_answer_embeddings(test_aid2tokid.to(model.device), freeze_last=args.freeze_last)
results = evaluate(model=model, tokenizer=tokenizer, data_loader=dataloader_test, device=device, dataset_name=args.dataset,
args=args, split="val", epoch=epoch)
val_stats.update({args.dataset + "_" + k: v for k, v in results.items()})
if results["total"] > best_acc:
best_epoch = epoch
best_acc = results["total"]
if dist.is_main_process() and args.save_dir:
checkpoint_path = os.path.join(args.save_dir, f"best_model.pth")
dist.save_on_master({"model": model, "optimizer": optimizer.state_dict(), "epoch": epoch, "args": args}, checkpoint_path)
json.dump({"acc": best_acc, "ep": epoch}, open(os.path.join(args.save_dir, args.dataset + "acc_val.json"), "w"))
else:
val_stats = {}
log_stats = {**{f"train_{k}": v for k, v in train_stats.items()}, **{f"val_{k}": v for k, v in val_stats.items()}, "epoch": epoch, "n_parameters": n_parameters}
if args.save_dir and dist.is_main_process():
with open(os.path.join(args.save_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
checkpoint_path = os.path.join(args.save_dir, f"ckpt.pth")
dist.save_on_master({"model": model, "optimizer": optimizer.state_dict(), "epoch": epoch, "args": args}, checkpoint_path)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
# load best ckpt
if dist.is_main_process() and args.save_dir:
print(f"loading best checkpoint from epoch {best_epoch}")
if args.save_dir:
torch.distributed.barrier() # wait all processes
checkpoint = torch.load(os.path.join(args.save_dir, f"best_model.pth"), map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.set_answer_embeddings(test_aid2tokid.to(model.device), freeze_last=args.freeze_last)
results = evaluate(model=model, tokenizer=tokenizer, data_loader=dataloader_test, device=device, dataset_name=args.dataset,
args=args, split="val" if (args.eval and not args.test) else "test")
if args.save_dir and dist.is_main_process():
json.dump(results, open(os.path.join(args.save_dir, args.dataset + ".json"), "w"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(parents=[get_args_parser()])
args = parser.parse_args()
if args.save_dir:
args.save_dir = os.path.join(args.presave_dir, args.save_dir)
args.model_name = os.path.join('./pretrained', args.model_name)
main(args)