-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathzeroshot.py
93 lines (81 loc) · 3.07 KB
/
zeroshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import argparse
import os
import torch
import clip
import os
from tqdm import tqdm
import datasets
from utils import ModelWrapper, test_model_on_dataset
from openai_imagenet_template import openai_imagenet_template
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-location",
type=str,
default=os.path.expanduser('~/data'),
help="The root directory for the datasets.",
)
parser.add_argument(
"--model-location",
type=str,
default=os.path.expanduser('~/ssd/checkpoints/soups'),
help="Where to download the models.",
)
parser.add_argument(
"--batch-size",
type=int,
default=512,
)
parser.add_argument(
"--custom-template", action="store_true", default=False,
)
parser.add_argument(
"--dataset", default="ImageNet",
help=f"Must be one of {','.join(['ImageNet', 'ImageNetV2', 'ImageNetR', 'ObjectNet', 'ImageNetA'])}"
)
parser.add_argument(
"--workers",
type=int,
default=4,
)
parser.add_argument(
"--model",
default='ViT-B/32',
help='Model to use -- you can try another like ViT-L/14'
)
return parser.parse_args()
def zeroshot_classifier(model, classnames, templates, device):
print('Building zero-shot classifier.')
with torch.no_grad():
zeroshot_weights = []
for classname in tqdm(classnames):
texts = [template(classname) for template in templates] #format with class
texts = clip.tokenize(texts).to(device) #tokenize
class_embeddings = model.encode_text(texts)
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(device)
return 100*zeroshot_weights.t()
if __name__ == '__main__':
args = parse_arguments()
DEVICE = 'cuda'
assert args.dataset in ['ImageNet', 'ImageNetV2', 'ImageNetR', 'ObjectNet', 'ImageNetA']
if args.custom_template:
template = [lambda x : f"a photo of a {x}."]
else:
template = openai_imagenet_template
base_model, preprocess = clip.load(args.model, 'cuda', jit=False)
dset = getattr(datasets, args.dataset)(preprocess, location=args.data_location, batch_size=args.batch_size, num_workers=args.workers)
clf = zeroshot_classifier(base_model, dset.classnames, template, DEVICE)
NUM_CLASSES = len(dset.classnames)
feature_dim = base_model.visual.output_dim
model = ModelWrapper(base_model, feature_dim, NUM_CLASSES, normalize=True, initial_weights=clf)
for p in model.parameters():
p.data = p.data.float()
model = model.cuda()
devices = [x for x in range(torch.cuda.device_count())]
model = torch.nn.DataParallel(model, device_ids=devices)
accuracy = test_model_on_dataset(model, dset)
print(f'Accuracy is {round(100 * accuracy, 2)}.')