-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathlosses.py
165 lines (129 loc) · 7.79 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import tensorflow as tf
from ops import *
def CAN_loss(model):
#builds optimizers and losses
model.G = model.generator(model, model.z)
model.D, model.D_logits, model.D_c, model.D_c_logits = model.discriminator(model,
model.inputs, reuse=False)
if model.experience_flag:
try:
model.experience_selection = tf.convert_to_tensor(random.sample(model.experience_buffer, 16))
except ValueError:
model.experience_selection = tf.convert_to_tensor(model.experience_buffer)
model.G = tf.concat([model.G, model.experience_selection], axis=0)
model.D_, model.D_logits_, model.D_c_, model.D_c_logits_ = model.discriminator(model,
model.G, reuse=True)
model.d_sum = histogram_summary("d", model.D)
model.d__sum = histogram_summary("d_", model.D_)
model.d_c_sum = histogram_summary("d_c", model.D_c)
model.d_c__sum = histogram_summary("d_c_", model.D_c_)
model.G_sum = image_summary("G", model.G)
correct_prediction = tf.equal(tf.argmax(model.y,1), tf.argmax(model.D_c,1))
model.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
true_label = tf.random_uniform(tf.shape(model.D),.8, 1.2)
false_label = tf.random_uniform(tf.shape(model.D_), 0.0, 0.3)
model.d_loss_real = tf.reduce_mean(
sigmoid_cross_entropy_with_logits(model.D_logits, true_label * tf.ones_like(model.D)))
model.d_loss_fake = tf.reduce_mean(
sigmoid_cross_entropy_with_logits(model.D_logits_, false_label * tf.ones_like(model.D_)))
model.d_loss_class_real = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=model.D_c_logits, labels=model.smoothing * model.y))
# if classifier is set, then use the classifier, o/w use the clasification layers in the discriminator
if model.style_net_checkpoint is None:
model.g_loss_class_fake = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=model.D_c_logits_,
labels=(1.0/model.y_dim)*tf.ones_like(model.D_c_)))
else:
model.classifier = model.make_style_net(model.G)
model.g_loss_class_fake = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=model.classifier,
labels=(1.0/model.y_dim)*tf.ones_like(model.D_c_)))
model.g_loss_fake = -tf.reduce_mean(tf.log(model.D_))
model.d_loss = model.d_loss_real + model.d_loss_class_real + model.d_loss_fake
model.g_loss = model.g_loss_fake + model.lamb * model.g_loss_class_fake
model.d_loss_real_sum = scalar_summary("d_loss_real", model.d_loss_real)
model.d_loss_fake_sum = scalar_summary("d_loss_fake", model.d_loss_fake)
model.d_loss_class_real_sum = scalar_summary("d_loss_class_real", model.d_loss_class_real)
model.g_loss_class_fake_sum = scalar_summary("g_loss_class_fake", model.g_loss_class_fake)
model.g_loss_sum = scalar_summary("g_loss", model.g_loss)
model.d_loss_sum = scalar_summary("d_loss", model.d_loss)
model.d_sum = merge_summary(
[model.z_sum, model.d_sum, model.d_loss_real_sum, model.d_loss_sum,
model.d_loss_class_real_sum, model.g_loss_class_fake_sum])
model.g_sum = merge_summary([model.z_sum, model.d__sum,
model.G_sum, model.d_loss_fake_sum, model.g_loss_sum])
model.g_opt = tf.train.AdamOptimizer(learning_rate=model.learning_rate, beta1=0.5)
model.d_opt = tf.train.AdamOptimizer(learning_rate=model.learning_rate, beta1=0.5)
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'd_' in var.name]
g_vars = [var for var in t_vars if 'g_' in var.name]
d_update = model.d_opt.minimize(model.d_loss, var_list=d_vars)
g_update = model.g_opt.minimize(model.g_loss, var_list=g_vars)
return d_update, g_update, [model.d_loss, model.g_loss], [model.d_sum, model.g_sum]
def WCAN_loss(model):
pass
def GAN_loss(model):
model.G = model.generator(model.z, model.y)
model.D, model.D_logits = model.discriminator(model.inputs, model.y, reuse=False)
model.D_, model.D_logits_ = model.discriminator(model.G, model.y, reuse=True)
true_label = tf.random_uniform(tf.shape(model.D),.8, 1.2)
false_label = tf.random_uniform(tf.shape(model.D_), 0.0, 0.3)
model.d_loss_real = tf.reduce_mean(
sigmoid_cross_entropy_with_logits(model.D_logits, true_label * tf.ones_like(model.D)))
model.d_loss_fake = tf.reduce_mean(
sigmoid_cross_entropy_with_logits(model.D_logits_, false_label * tf.ones_like(model.D_)))
model.g_loss = tf.reduce_mean(
sigmoid_cross_entropy_with_logits(model.D_logits_, tf.ones_like(model.D_)))
model.d_loss = model.d_loss_real + model.d_loss_fake
model.d_sum = histogram_summary("d", model.D)
model.d__sum = histogram_summary("d_", model.D_)
model.G_sum = image_summary("G", model.G)
model.g_loss_sum = scalar_summary("g_loss", model.g_loss)
model.d_loss_sum = scalar_summary("d_loss", model.d_loss)
model.d_loss_real_sum = scalar_summary("d_loss_real", model.d_loss_real)
model.d_loss_fake_sum = scalar_summary("d_loss_fake", model.d_loss_fake)
model.d_sum = merge_summary(
[model.z_sum, model.d_sum, model.d_loss_real_sum, model.d_loss_sum])
model.g_sum = merge_summary([model.z_sum, model.d__sum,
model.G_sum, model.d_loss_fake_sum, model.g_loss_sum])
model.g_opt = tf.train.AdamOptimizer(learning_rate=model.learning_rate, beta1=0.5)
model.d_opt = tf.train.AdamOptimizer(learning_rate=model.learning_rate, beta1=0.5)
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'd_' in var.name]
g_vars = [var for var in t_vars if 'g_' in var.name]
d_update = model.d_opt.minimize(model.d_loss, var_list=d_vars)
g_update = model.g_opt.minimize(model.g_loss, var_list=g_vars)
return d_update, g_update, [model.d_loss, model.g_loss], [model.d_sum, model.g_sum]
def WGAN_loss(model):
model.g_opt = tf.train.AdamOptimizer(learning_rate=model.learning_rate, beta1=0.5)
model.d_opt = tf.train.AdamOptimizer(learning_rate=model.learning_rate, beta1=0.5)
model.G = model.generator(model, model.z, model.y)
model.D_real = model.discriminator(model, model.inputs, model.y, reuse=False)
model.D_fake = model.discriminator(model, model.G, model.y, reuse=True)
model.g_loss = -tf.reduce_mean(model.D_fake)
model.wp= -tf.reduce_mean(model.D_fake) + tf.reduce_mean(model.D_real)
epsilon = tf.random_uniform(
shape= [model.batch_size, 1,1,1],
minval=0.,
maxval=1.
)
x_hat = model.inputs + epsilon * (model.G - model.inputs)
D_x_hat = model.discriminator(model, x_hat, model.y,reuse=True)
grad_D_x_hat = tf.gradients(D_x_hat, [x_hat])[0]
model.slopes = tf.sqrt(tf.reduce_sum(tf.square(grad_D_x_hat), reduction_indices=[1,2,3]))
model.gradient_penalty = tf.reduce_mean((model.slopes - 1.) ** 2)
model.d_loss = -model.wp + 10 * model.gradient_penalty
t_vars = tf.trainable_variables()
model.d_vars = [var for var in t_vars if 'd_' in var.name]
model.g_vars = [var for var in t_vars if 'g_' in var.name]
g_update = model.g_opt.minimize(model.g_loss, var_list=model.g_vars)
d_update = model.d_opt.minimize(model.d_loss, var_list=model.d_vars)
loss_ops = [model.d_loss, model.g_loss]
model.G_sum = image_summary("G", model.G)
model.g_loss_sum = scalar_summary("g_loss", model.g_loss)
model.d_loss_sum = scalar_summary("d_loss", model.d_loss)
model.wp_sum = scalar_summary("wasserstein_penalty", model.wp)
model.gp_sum = scalar_summary("gradient_penalty", model.gradient_penalty)
model.d_sum = merge_summary([model.d_loss_sum, model.wp_sum, model.gp_sum])
model.g_sum = merge_summary([model.g_loss_sum, model.G_sum])
return d_update, g_update, loss_ops, [model.d_sum, model.g_sum]