-
Notifications
You must be signed in to change notification settings - Fork 2
/
example-config.yml
102 lines (74 loc) · 2.14 KB
/
example-config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
base_dir: /path/to/data/ # path to dataset on disk
# batch size (meta-batch size for MAML)
batch_size: 256
early_stopping_patience: 50
epochs: 300
# after how many epochs the validation set is evaluated
eval_every: 1
# name of the experiment, will be part of the run directory name
experiment_name: example-experiment
# Defines whether during validation/testing the model is finetuned on the support set
finetune: false
finetune_epochs: 5
finetune_lr: 0.01
# defines whether the input and output values are absolute values, deltas, or both. Only makes sense for timeseries
# tasks
input_output_types:
input: values
output: values
# Input variables.
input_vars: [0]
learning_rate: 0.0001
# Meta-dataset to use
meta_dataset: datasetname
# Metrics to use in validation
metric:
- mse
# Loss function
loss_fn: mse
# Defines whether early stopping is based on the mean or median validation metric across all tasks
metric_aggregation: mean
# Model type (lstm, feedforward, ...)
model: feedforward
# Number of parallel workers
num_workers: 4
# Optimizer in training and finetuning
optimizer:
train: adam
finetune: sgd
# Defines the number of time steps that are used to train and validate the model.
# For non-timeseries tasks, set this to 1
predict_last_n: 1
# Size of the query set in evaluation
query_size: 100
# directory where experiments are stored
run_dir: /path/to/workingdir
# Defines how often the model is saved
save_every: 1
# Random seed
seed: 1
# Length of the input sequence. Set to 1 for non-timeseries tasks.
seq_length: 1
# Size of the support set in finetuning.
support_size: 10
# Target variables. For each variable, you can specify one or more time steps to be predicted.
# For non-timeseries tasks, use 0.
target_vars:
varname:
- 0
# Test datasets
test_datasets:
- dsname_1
- dsname_2
# If True, the whole timeseries will be viewed as one sample. Else, each time step is a sample. Set to false for
# non-timeseries tasks
timeseries_is_sample: false
# Train datasets
train_datasets:
- dsname_3
# Training setup (supervised, maml, ...)
training_setup: supervised
# Validation datasets
val_datasets:
- dsname_4
- dsname_5