forked from epfml/getting-started
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsub.py
274 lines (262 loc) · 7.03 KB
/
csub.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/python3
import argparse
from datetime import datetime, timedelta
import re
import subprocess
import tempfile
import yaml
import os
parser = argparse.ArgumentParser(description="Cluster Submit Utility")
parser.add_argument(
"-n",
"--name",
type=str,
required=False,
help="Job name (has to be unique in the namespace)",
)
parser.add_argument(
"-c",
"--command",
type=str,
required=False,
help="Command to run on the instance (default sleep for duration)",
)
parser.add_argument(
"-t",
"--time",
type=str,
required=False,
help="The maximum duration allowed for this job (default 24h)",
)
parser.add_argument(
"-g",
"--gpus",
type=int,
default=1,
required=False,
help="The number of GPUs requested (default 1)",
)
parser.add_argument(
"--cpus",
type=int,
default=4,
required=False,
help="The number of CPUs requested (default 4)",
)
parser.add_argument(
"--memory",
type=str,
default="4G",
required=False,
help="The minimum amount of CPU memory (default 4G). must match regular expression '^([+-]?[0-9.]+)([eEinumkKMGTP]*[-+]?[0-9]*)$'",
)
# TODO: add gpu memory or GPU selection argument
parser.add_argument(
"-i",
"--image",
type=str,
required=False,
default="ic-registry.epfl.ch/mlo/mlo:v1",
help="The URL of the docker image that will be used for the job",
)
parser.add_argument(
"-p",
"--port",
type=int,
required=False,
help="A cluster port for connect to this node",
)
parser.add_argument(
"-u",
"--user",
type=str,
default="user.yaml",
help="Path to a yaml file that defines the user",
)
parser.add_argument(
"--train",
action="store_true",
help="train job (default is interactive, which has higher priority)",
)
parser.add_argument(
"-d",
"--dry",
action="store_true",
help="Print the generated yaml file instead of submitting it",
)
parser.add_argument(
"--backofflimit",
default=0,
type=int,
help="specifies the number of retries before marking a workload as failed (default 0). only exists for train jobs",
)
parser.add_argument(
"--node_type",
type=str,
default="",
choices=["", "G9", "G10"],
help="node type to run on (default is empty, which means any node). \
only exists for IC cluster: G9 for V100, G10 for A100. \
leave empty for RCP",
)
parser.add_argument(
"--host_ipc",
action="store_true",
help="created workload will use the host's ipc namespace",
)
parser.add_argument(
"--no_symlinks",
action="store_true",
help="do not create symlinks to the user's home directory",
)
if __name__ == "__main__":
args = parser.parse_args()
if not os.path.exists(args.user):
print(
f"User file {args.user} does not exist, use the template in `template/user.yaml` to create your user file."
)
exit(1)
with open(args.user, "r") as file:
user_cfg = yaml.safe_load(file)
if args.name is None:
args.name = f"{user_cfg['user']}-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
if args.time is None:
args.time = 7 * 24 * 60 * 60
else:
pattern = r"((?P<days>\d+)d)?((?P<hours>\d+)h)?((?P<minutes>\d+)m)?((?P<seconds>\d+)s?)?"
match = re.match(pattern, args.time)
parts = {k: int(v) for k, v in match.groupdict().items() if v}
args.time = int(timedelta(**parts).total_seconds())
if args.command is None:
args.command = f"sleep {args.time}"
if args.train:
workload_kind = "TrainingWorkload"
backofflimit = f"""
backoffLimit:
value: {args.backofflimit}
"""
else:
workload_kind = "InteractiveWorkload"
backofflimit = ""
working_dir = user_cfg["working_dir"]
if not args.no_symlinks:
symlink_targets, symlink_destinations = zip(*user_cfg["symlinks"].items())
symlink_targets = ":".join(
[os.path.join(working_dir, target) for target in symlink_targets]
)
symlink_paths = ":".join(
[
os.path.join(f"/home/{user_cfg['user']}", dest[1])
for dest in symlink_destinations
]
)
symlink_types = ":".join([dest[0] for dest in symlink_destinations])
else:
symlink_targets = ""
symlink_paths = ""
symlink_types = ""
cfg = f"""
apiVersion: run.ai/v2alpha1
kind: {workload_kind}
metadata:
annotations:
runai-cli-version: 2.9.25
labels:
PreviousJob: "true"
name: {args.name}
namespace: runai-mlo-{user_cfg['user']}
spec:
name:
value: {args.name}
arguments:
value: "/bin/zsh -c 'source ~/.zshrc && {args.command}'" # zshrc is just loaded to have some env variables ready
environment:
items:
HOME:
value: "/home/{user_cfg['user']}"
NB_USER:
value: {user_cfg['user']}
NB_UID:
value: "{user_cfg['uid']}"
NB_GROUP:
value: {user_cfg['group']}
NB_GID:
value: "{user_cfg['gid']}"
WORKING_DIR:
value: "{working_dir}"
SYMLINK_TARGETS:
value: "{symlink_targets}"
SYMLINK_PATHS:
value: "{symlink_paths}"
SYMLINK_TYPES:
value: "{symlink_types}"
WANDB_API_KEY:
value: {user_cfg['wandb_api_key']}
HF_HOME:
value: /mloscratch/hf_cache
EPFML_LDAP:
value: {user_cfg['user']}
gpu:
value: "{args.gpus}"
cpu:
value: "{args.cpus}"
memory:
value: "{args.memory}"
image:
value: {args.image}
imagePullPolicy:
value: Always
{backofflimit}
pvcs:
items:
pvc--0:
value:
claimName: runai-mlo-{user_cfg['user']}-scratch
existingPvc: true
path: /mloscratch
readOnly: false
runAsGid:
value: {user_cfg['gid']}
runAsUid:
value: {user_cfg['uid']}
runAsUser:
value: true
serviceType:
value: ClusterIP
username:
value: {user_cfg['user']}
"""
if args.node_type:
cfg += f"""
nodeType:
value: {args.node_type} # G10 for A100, G9 for V100 (on IC cluster)
"""
if args.host_ipc:
cfg += f"""
hostIpc:
value: true
"""
with tempfile.NamedTemporaryFile(mode="w", suffix=".yaml") as f:
f.write(cfg)
f.flush()
if args.dry:
print(cfg)
else:
result = subprocess.run(
["kubectl", "apply", "-f", f.name],
# check=True,
capture_output=True,
# text=True,
)
print(result.stdout)
print(result.stderr)
print("\nThe following commands may come in handy:")
print(f"runai exec {args.name} -it zsh # opens an interactive shell on the pod")
print(
f"runai delete job {args.name} # kills the job and removes it from the list of jobs"
)
print(
f"runai describe job {args.name} # shows information on the status/execution of the job"
)
print("runai list jobs # list all jobs and their status")
print(f"runai logs {args.name} # shows the output/logs for the job")