-
Notifications
You must be signed in to change notification settings - Fork 48
/
ASL.py
65 lines (58 loc) · 2.05 KB
/
ASL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import cv2
import numpy as np
import util as ut
import svm_train as st
import re
model=st.trainSVM(17)
#create and train SVM model each time coz bug in opencv 3.1.0 svm.load() https://github.com/Itseez/opencv/issues/4969
cam=int(raw_input("Enter Camera number: "))
cap=cv2.VideoCapture(cam)
font = cv2.FONT_HERSHEY_SIMPLEX
def nothing(x) :
pass
text= " "
temp=0
previouslabel=None
previousText=" "
label = None
while(cap.isOpened()):
_,img=cap.read()
cv2.rectangle(img,(900,100),(1300,500),(255,0,0),3) # bounding box which captures ASL sign to be detected by the system
img1=img[100:500,900:1300]
img_ycrcb = cv2.cvtColor(img1, cv2.COLOR_BGR2YCR_CB)
blur = cv2.GaussianBlur(img_ycrcb,(11,11),0)
skin_ycrcb_min = np.array((0, 138, 67))
skin_ycrcb_max = np.array((255, 173, 133))
mask = cv2.inRange(blur, skin_ycrcb_min, skin_ycrcb_max) # detecting the hand in the bounding box using skin detection
contours,hierarchy = cv2.findContours(mask.copy(),cv2.RETR_EXTERNAL, 2)
cnt=ut.getMaxContour(contours,4000) # using contours to capture the skin filtered image of the hand
if cnt!=None:
gesture,label=ut.getGestureImg(cnt,img1,mask,model) # passing the trained model for prediction and fetching the result
if(label!=None):
if(temp==0):
previouslabel=label
if previouslabel==label :
previouslabel=label
temp+=1
else :
temp=0
if(temp==40):
if(label=='P'):
label=" "
text= text + label
if(label=='Q'):
words = re.split(" +",text)
words.pop()
text = " ".join(words)
#text=previousText
print text
cv2.imshow('PredictedGesture',gesture) # showing the best match or prediction
cv2.putText(img,label,(50,150), font,8,(0,125,155),2) # displaying the predicted letter on the main screen
cv2.putText(img,text,(50,450), font,3,(0,0,255),2)
cv2.imshow('Frame',img)
cv2.imshow('Mask',mask)
k = 0xFF & cv2.waitKey(10)
if k == 27:
break
cap.release()
cv2.destroyAllWindows()