-
Notifications
You must be signed in to change notification settings - Fork 0
/
sum_bar_graphs.qmd
255 lines (205 loc) · 5.88 KB
/
sum_bar_graphs.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Summary bar graphs {#sec-sum-bar-graphs}
```{r}
#| label: setup
#| message: false
#| warning: false
#| include: false
library(tidyverse)
library(lubridate)
library(scales)
library(knitr)
library(kableExtra)
library(colorblindr)
library(downlit)
# fonts ----
library(extrafont)
library(sysfonts)
source("_common.R")
# use font
showtext::showtext_auto()
# set theme
ggplot2::theme_set(theme_ggp2g(
base_size = 15))
```
:::: {.callout-note collapse="false" icon=false}
<br>
::: {style="font-size: 1.10em; color: #02577A;"}
**This graph requires:**
:::
::: {style="font-size: 1.05em; color: #282b2d;"}
**`r emo::ji("check")` a numeric (continuous) variable**
**`r emo::ji("check")` a categorical variable**
:::
```{r}
#| label: full_code_display
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| out-height: '60%'
#| out-width: '60%'
#| fig-align: right
peng_sum_col <- palmerpenguins::penguins |>
dplyr::select(body_mass_g, island) |>
tidyr::drop_na() |>
# divide the mass value by 1000
dplyr::mutate(
body_mass_kg = body_mass_g / 1000
) |>
dplyr::group_by(island) |>
dplyr::summarise(
avg_bmi_kg = mean(body_mass_kg)
) |>
dplyr::ungroup()
labs_sum_col <- labs(
title = "Average Penguin Body Mass",
subtitle = "What is the average penguin BMI per Island?",
x = "Island",
y = "Average Penguin Body Mass (kg)")
ggp2_sum_col <- ggplot(data = peng_sum_col,
aes(x = island,
y = avg_bmi_kg)) +
geom_col(aes(fill = island),
show.legend = FALSE)
ggp2_sum_col +
labs_sum_col
```
::::
## Description
Bar graphs can summarize data by showing a statistic for each category. The x-axis lists the categories, and the y-axis shows the values. They can include error bars to show variation or confidence intervals.
In `ggplot2`, we can create summary bar graphs with `geom_bar()`.
## Set up
::: {style="font-size: 1.10em; color: #1e83c8;"}
**PACKAGES:**
:::
Install packages.
::: {style="font-size: 0.85em;"}
```{r}
#| label: pkg_code_sum_col
#| code-fold: show
#| eval: false
#| echo: true
#| warning: false
#| message: false
#| results: hide
install.packages("palmerpenguins")
library(palmerpenguins)
library(ggplot2)
```
:::
::: {style="font-size: 1.10em; color: #1e83c8;"}
**DATA:**
:::
::: {.column-margin}
![Artwork by Allison Horst](www/lter_penguins.png){fig-align="right" width="100%" height="100%"}
:::
Remove the missing values from `body_mass_g` and `island` in the `palmerpenguins::penguins` data and convert body mass in grams to kilograms (`body_mass_kg`).
*We'll also reduce the number of columns in the `penguins` data for clarity.*
::: {style="font-size: 0.85em;"}
```{r}
#| label: data_code_sum_col
#| code-fold: show
#| eval: true
#| echo: true
peng_sum_col <- palmerpenguins::penguins |>
dplyr::select(body_mass_g, island) |>
tidyr::drop_na() |>
# divide the mass value by 1000
dplyr::mutate(
body_mass_kg = body_mass_g / 1000
) |>
dplyr::group_by(island) |>
dplyr::summarise(
avg_bmi_kg = mean(body_mass_kg)
) |>
dplyr::ungroup()
dplyr::glimpse(peng_sum_col)
```
:::
## Grammar
::: {style="font-size: 1.10em; color: #1e83c8;"}
**CODE:**
:::
- Create labels with `labs()`
- Initialize the graph with `ggplot()` and provide `data`
- Map `island` to `x` and `avg_bmi_kg` to `y`
- *Inside* the `aes()` of `geom_col()`, map `island` to `fill`
- *Outside* the `aes()` of `geom_col()`, remove the legend with `show.legend = FALSE`
::: {style="font-size: 0.85em;"}
```{r}
#| label: code_graph_sum_col
#| code-fold: show
#| eval: false
#| echo: true
#| warning: false
#| message: false
#| out-height: '100%'
#| out-width: '100%'
labs_sum_col <- labs(
title = "Average Penguin Body Mass",
subtitle = "What is the average penguin BMI per Island?",
x = "Island",
y = "Average Penguin Body Mass (kg)")
ggp2_sum_col <- ggplot(data = peng_sum_col,
aes(x = island,
y = avg_bmi_kg)) +
geom_col(aes(fill = island),
show.legend = FALSE)
ggp2_sum_col +
labs_sum_col
```
:::
::: {style="font-size: 1.10em; color: #1e83c8;"}
**GRAPH:**
:::
```{r}
#| label: create_graph_sum_col
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| out-height: '100%'
#| out-width: '100%'
#| layout-nrow: 1
#| column: page-inset-right
labs_sum_col <- labs(
title = "Average Penguin Body Mass",
subtitle = "What is the average penguin BMI per Island?",
x = "Island",
y = "Average Penguin Body Mass (kg)")
ggp2_sum_col <- ggplot(data = peng_sum_col,
aes(x = island,
y = avg_bmi_kg)) +
geom_col(aes(fill = island),
show.legend = FALSE)
ggp2_sum_col +
labs_sum_col
```
## More Info
Below is more information on `geom_bar()` vs. `geom_col()`.
### Identity vs. Count
- The `geom_bar()` geom will also create grouped bar graphs, but we have to switch the `stat` argument to `"identity"`.
::: {style="font-size: 0.85em;"}
```{r}
#| label: show_stat_sum_col
#| eval: true
#| echo: true
#| warning: false
#| message: false
#| out-height: '100%'
#| out-width: '100%'
#| layout-nrow: 1
#| column: page-inset-right
ggplot(data = peng_sum_col,
aes(x = island,
y = avg_bmi_kg)) +
geom_col(aes(fill = island),
show.legend = FALSE,
stat = "identity") +
labs_sum_col
```
:::
### `geom_bar()` vs. `geom_col()`
<br>
- `geom_bar()` will map a categorical variable to the `x` *or* `y` and display counts for the discrete levels (see [`stat_count()`](https://ggplot2.tidyverse.org/reference/geom_bar.html) for more info)
- `geom_col()` will map *both* `x` *and* `y` aesthetics, and is used when we want to display numerical (quantitative) values across the levels of a categorical variable. `geom_col()` assumes these values have been created in their own column (see [`stat_identity()`](https://ggplot2.tidyverse.org/reference/stat_identity.html) for more info)