-
Notifications
You must be signed in to change notification settings - Fork 0
/
overlapping_stacked_density_plots.qmd
335 lines (271 loc) · 7.96 KB
/
overlapping_stacked_density_plots.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Overlapping density plot {#sec-overlapping-stacked-density-plots}
```{r}
#| label: setup
#| message: false
#| warning: false
#| include: false
library(tidyverse)
library(lubridate)
library(scales)
library(knitr)
library(kableExtra)
library(colorblindr)
library(downlit)
# fonts ----
library(extrafont)
library(sysfonts)
source("_common.R")
# use font
showtext::showtext_auto()
# set theme
ggplot2::theme_set(theme_ggp2g(
base_size = 15))
```
```{r}
#| label: status
#| results: "asis"
#| echo: false
# status ----
# polish, dev, draft, complete
status("complete")
```
:::: {.callout-note collapse="false" icon=false}
<br>
```{r}
#| label: full_code_display
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| out-height: '60%'
#| out-width: '60%'
#| fig-align: right
library(palmerpenguins)
library(ggplot2)
library(patchwork)
peng_density <- filter(penguins, !is.na(sex))
labs_ovrlp_density <- labs(
subtitle = "position = 'identity'",
x = "Flipper length (mm)",
fill = "Sex")
ggp2_ovrlp_density <- ggplot(data = peng_density,
aes(x = flipper_length_mm,
fill = sex)) +
geom_density(alpha = 1/3)
ovrlp_density <- ggp2_ovrlp_density +
labs_ovrlp_density +
ggplot2::theme_minimal(base_size = 11)
labs_stack_density <- labs(
subtitle = "position = 'stack'",
x = "Flipper length (mm)",
fill = "Sex")
ggp2_stack_density <- ggplot(data = peng_density,
aes(x = flipper_length_mm,
after_stat(count),
fill = sex)) +
geom_density(position = "stack",
alpha = 1/3)
stack_density <- ggp2_stack_density +
labs_stack_density +
ggplot2::theme_minimal(base_size = 11)
ovrlp_density + stack_density +
patchwork::plot_layout(ncol = 1)
```
::: {style="font-size: 1.10em; color: #02577A;"}
**This graph requires:**
:::
::: {style="font-size: 1.05em; color: #282b2d;"}
**`r emo::ji("check")` a categorical variable**
:::
::: {style="font-size: 1.05em; color: #282b2d;"}
**`r emo::ji("check")` a numeric (continuous) variable**
:::
::::
## Description
Density plots are [*smoothed version(s) of histogram(s)*](https://ggplot2.tidyverse.org/reference/geom_density.html). They can are great for comparing the distributions of a continuous variable across the levels of a categorical variable.
`geom_density()` creates a kernel density estimate. The default `position` argument is `"identity"`, which takes the data as is. However, we can change `position` to `"stack"` to display overlapping distributions.
## Set up
::: {style="font-size: 1.15em; color: #1e83c8;"}
**PACKAGES:**
:::
::: {style="font-size: 0.95rem;"}
Install packages.
:::
::: {style="font-size: 0.85em;"}
```{r}
#| label: pkg_code_ovrlp_density
#| code-fold: show
#| eval: true
#| echo: true
#| warning: false
#| message: false
#| results: hide
install.packages("palmerpenguins")
library(palmerpenguins)
library(ggplot2)
```
:::
::: {style="font-size: 1.15em; color: #1e83c8;"}
**DATA:**
:::
::: {.column-margin}
![Artwork by allison horst](www/lter_penguins.png){fig-align="right" width="100%" height="100%"}
:::
::: {style="font-size: 0.95rem;"}
Remove missing `sex` from the `penguins` data
:::
::: {style="font-size: 0.85em;"}
```{r}
#| label: data_code_ovrlp_density
#| code-fold: show
#| eval: true
#| echo: true
peng_density <- dplyr::filter(penguins, !is.na(sex))
dplyr::glimpse(peng_density)
```
:::
## Grammar
::: {style="font-size: 1.15em; color: #1e83c8;"}
**CODE:**
:::
- Create labels with `labs()`
- Initialize the graph with `ggplot()` and provide `data`
- Map the `flipper_length_mm` to the `x` and `sex` to `fill`
- Add the `geom_density()`
- Set the `alpha` to `1/3` (to handle the overlapping areas)
::: {style="font-size: 0.85em;"}
```{r}
#| label: code_graph_ovrlp_density
#| code-fold: show
#| eval: false
#| echo: true
#| warning: false
#| message: false
#| out-height: '100%'
#| out-width: '100%'
labs_ovrlp_density <- labs(
title = "Adult foraging penguins",
x = "Flipper length (millimeters)",
fill = "Sex")
ggp2_ovrlp_density <- ggplot(data = peng_density,
aes(x = flipper_length_mm,
fill = sex)) +
geom_density(alpha = 1/3)
ggp2_ovrlp_density +
labs_ovrlp_density
```
:::
::: {style="font-size: 1.15em; color: #1e83c8;"}
**GRAPH:**
:::
::: {.column-margin}
*A downside of density plots is the lack of interpretability of the `y` axis*
:::
Make density area slightly transparent to handle over-plotting.
```{r}
#| label: create_graph_ovrlp_density
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| out-height: '100%'
#| out-width: '100%'
#| layout-nrow: 1
#| column: page-inset-right
labs_ovrlp_density <- labs(
title = "Adult foraging penguins",
x = "Flipper length (millimeters)",
fill = "Sex")
ggp2_ovrlp_density <- ggplot(data = peng_density,
aes(x = flipper_length_mm,
fill = sex)) +
geom_density(alpha = 1/3)
ggp2_ovrlp_density +
labs_ovrlp_density
```
## More info
`ggplot2` has multiple options for overlapping density plots, so which one to use will depend on how you'd like to display the relative distributions in your data. We'll cover three options below:
### `"stack"`
If we change the `position` to `"stack"` we can see the smoothed estimates are 'stacked' on top each other (and the `y` axis shifts slightly).
::: {style="font-size: 0.85em;"}
```{r}
#| label: code_graph_stack_density
#| eval: true
#| echo: true
#| warning: false
#| out-height: '100%'
#| out-width: '100%'
#| layout-nrow: 1
#| column: page-inset-right
labs_stack_density <- labs(
title = "Adult foraging penguins",
x = "Flipper length (millimeters)",
fill = "Sex")
ggp2_stack_density <- ggplot(data = peng_density,
mapping = aes(x = flipper_length_mm,
fill = sex)) +
geom_density(position = "stack",
alpha = 1 / 3)
ggp2_stack_density +
labs_stack_density
```
:::
::: {style="font-size: 0.95rem;"}
Setting `position` to `'stack'` [loses marginal densities](https://ggplot2.tidyverse.org/reference/geom_density.html#ref-examples)
:::
### `after_stat(count)`
If we include `after_stat(count)` as one of our mapped aesthetics, the mapping is postponed until after statistical transformation, and uses the [*`density * n` instead of the default density*](https://ggplot2.tidyverse.org/reference/geom_density.html#computed-variables).
::: {style="font-size: 0.85em;"}
```{r}
#| label: code_graph_after_stat_density
#| eval: true
#| echo: true
#| warning: false
#| message: false
#| out-height: '100%'
#| out-width: '100%'
#| layout-nrow: 1
#| column: page-inset-right
labs_after_stat_density <- labs(
title = "Adult foraging penguins",
x = "Flipper length (millimeters)",
fill = "Sex")
ggp2_after_stat_density <- ggplot(data = peng_density,
aes(x = flipper_length_mm,
after_stat(count),
fill = sex)) +
geom_density(position = "stack",
alpha = 1/3)
ggp2_after_stat_density +
labs_after_stat_density
```
:::
Adding [`after_stat(count)`](https://ggplot2.tidyverse.org/reference/geom_density.html#computed-variables) *'preserves marginal densities.'*, which result in more a interpretable `y` axis (depending on the audience)
### `"fill"`
Using `after_stat(count)` with `position = "fill"` creates in a conditional density estimate.
::: {style="font-size: 0.85em;"}
```{r}
#| label: code_graph_fill_density
#| eval: true
#| echo: true
#| warning: false
#| message: false
#| out-height: '100%'
#| out-width: '100%'
#| layout-nrow: 1
#| column: page-inset-right
labs_fill_density <- labs(
title = "Adult foraging penguins",
x = "Flipper length (millimeters)",
fill = "Sex")
ggp2_fill_density <- ggplot(data = peng_density,
aes(x = flipper_length_mm,
after_stat(count),
fill = sex)) +
geom_density(position = "fill",
alpha = 1/3)
ggp2_fill_density +
labs_fill_density
```
:::
This results in a `y` axis ranging from 0-1, and the area filled with the relative proportional values.