-
Notifications
You must be signed in to change notification settings - Fork 0
/
histograms.qmd
193 lines (151 loc) · 4.23 KB
/
histograms.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Histograms {#sec-histograms}
```{r}
#| label: setup
#| message: false
#| warning: false
#| include: false
library(tidyverse)
library(lubridate)
library(scales)
library(knitr)
library(kableExtra)
library(colorblindr)
library(downlit)
# fonts ----
library(extrafont)
library(sysfonts)
source("_common.R")
# use font
showtext::showtext_auto()
# set theme
ggplot2::theme_set(theme_ggp2g(
base_size = 15))
```
:::: {.callout-note collapse="false" icon=false}
::: {style="font-size: 1.25em; color: #02577A;"}
**Histograms require:**
:::
::: {style="font-size: 1.05em; color: #282b2d;"}
**`r emo::ji("check")` a numeric (continuous) variable**
:::
<br>
```{r}
#| label: full_code_display
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| out-height: '60%'
#| out-width: '60%'
#| fig-align: right
library(palmerpenguins)
library(ggplot2)
penguins <- palmerpenguins::penguins
labs_histogram <- labs(
title = "Adult foraging penguins",
subtitle = "Distribution of flipper length",
x = "Flipper length (mm)")
ggp2_hist <- ggplot(data = penguins,
aes(x = flipper_length_mm)) +
geom_histogram()
ggp2_hist +
labs_histogram
```
::::
## Description
A histogram is a graph that displays numerical data spread over a time frame or interval. Each bar shows the frequency of data points within a specific range. Unlike bar graphs, histograms do not have gaps between the bars, indicating that data covers a continuous interval. The x-axis displays the variable range, while the y-axis represents observation frequency.
Unlike a typical bar graph, histograms can be used to visually asses the '[normality](https://en.wikipedia.org/wiki/Normal_distribution)' (i.e. *are the bars symmetrical, with a single peak in the middle of the `x` axis?* Or *do the bars form multiple peaks?*) or '[skewness](https://en.wikipedia.org/wiki/Skewness)' (i.e., *is there a long 'tail' of bars with decreasing length on either end of the `x` axis?*) of a variable's distribution.
## Set up
::: {style="font-size: 1.10em; color: #1e83c8;"}
**PACKAGES:**
:::
::: {style="font-size: 0.95rem;"}
Install packages.
:::
::: {style="font-size: 0.85em;"}
```{r}
#| label: pkg_code_histogram
#| code-fold: show
#| eval: false
#| echo: true
#| warning: false
#| message: false
#| results: hide
install.packages("palmerpenguins")
library(palmerpenguins)
library(ggplot2)
```
:::
::: {style="font-size: 1.10em; color: #1e83c8;"}
**DATA:**
:::
::: {.column-margin}
![Artwork by Allison Horst](www/lter_penguins.png){fig-align="right" width="100%" height="100%"}
:::
::: {style="font-size: 0.95rem;"}
The `penguins` data.
:::
::: {style="font-size: 0.85em;"}
```{r}
#| label: data_code_histogram
#| code-fold: show
#| eval: true
#| echo: true
penguins <- palmerpenguins::penguins
glimpse(penguins)
```
:::
## Grammar
::: {style="font-size: 1.10em; color: #1e83c8;"}
**CODE:**
:::
::: {style="font-size: 0.95rem;"}
Create labels with `labs()`
Initialize the graph with `ggplot()` and provide `data`
Assign `flipper_length_mm` to the `x`
Add the `geom_histogram()`
Adjust the `bins` accordingly
:::
::: {style="font-size: 0.85em;"}
```{r}
#| label: code_graph_histogram
#| code-fold: show
#| eval: false
#| echo: true
#| warning: false
#| message: false
labs_histogram <- labs(
title = "Adult foraging penguins",
subtitle = "Distribution of flipper length",
x = "Flipper length (millimeters)")
ggp2_hist <- ggplot(data = penguins,
aes(x = flipper_length_mm)) +
geom_histogram()
ggp2_hist +
labs_histogram
```
:::
::: {style="font-size: 1.10em; color: #1e83c8;"}
**GRAPH:**
:::
```{r}
#| label: create_graph_histogram
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| layout-nrow: 1
#| column: page-inset-right
labs_histogram <- labs(
title = "Adult foraging penguins",
subtitle = "Distribution of flipper length",
x = "Flipper length (millimeters)")
ggp2_hist <- ggplot(data = penguins,
aes(x = flipper_length_mm)) +
geom_histogram()
ggp2_hist +
labs_histogram
```
::: {style="font-size: 0.95rem;"}
The standard number of bins is `30`, but ['you should always override this value, exploring multiple widths to find the best to illustrate the stories in your data.'](https://ggplot2.tidyverse.org/reference/geom_histogram.html)
:::