-
Notifications
You must be signed in to change notification settings - Fork 0
/
cleveland_dot_plots.qmd
345 lines (279 loc) · 8.98 KB
/
cleveland_dot_plots.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# Cleveland dot plots {#sec-cleveland-dot-plots}
```{r}
#| label: setup
#| message: false
#| warning: false
#| include: false
library(tidyverse)
library(lubridate)
library(scales)
library(knitr)
library(kableExtra)
library(colorblindr)
library(downlit)
# fonts ----
library(extrafont)
library(sysfonts)
source("_common.R")
# use font
showtext::showtext_auto()
# set theme
ggplot2::theme_set(theme_ggp2g(
base_size = 15))
```
:::: {.callout-note collapse="false" icon=false}
<br>
::: {style="font-size: 1.10em; color: #02577A;"}
**This graph requires:**
:::
::: {style="font-size: 1.05em; color: #282b2d;"}
**`r emo::ji("check")` a numeric (continuous) variable**
**`r emo::ji("check")` at least one categorical variable (with two levels)**
:::
```{r}
#| label: full_code_display
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| out-height: '60%'
#| out-width: '60%'
#| fig-align: right
library(palmerpenguins)
library(ggplot2)
peng_clev_dots <- palmerpenguins::penguins |>
dplyr::filter(!is.na(sex) & !is.na(flipper_length_mm)) |>
dplyr::group_by(sex, island) |>
dplyr::summarise(
med_flip_length_mm = median(flipper_length_mm)
) |>
dplyr::ungroup()
labs_clev_dots <- labs(
title = "Flipper Length Differences",
subtitle = "Male and female penguins",
x = "Median Flipper Length",
y = "Island",
color = "Sex"
)
ggp2_clev_dots <- ggplot(data = peng_clev_dots,
mapping = aes(x = med_flip_length_mm, y = fct_rev(island))) +
geom_line(aes(group = island), linewidth = 0.75) +
geom_point(aes(color = sex), size = 2.25)
# glimpse(peng_clev_dots)
ggp2_clev_dots +
labs_clev_dots
```
::::
## Description
Cleveland dot plots compare numbers with dots on a line and are more efficient than bar graphs. The graph lists the categories on the side and shows the data with dots along a line.
Typically, the graph contains two points representing the numerical value on the `y` axis, differentiated by color. A line connecting the two points represents the difference between the two categorical levels (the width of the line is the size of the difference).
## Set up
::: {style="font-size: 1.10em; color: #1e83c8;"}
**PACKAGES:**
:::
Install packages.
::: {style="font-size: 0.85em;"}
```{r}
#| label: pkg_code_clev_dots
#| code-fold: show
#| eval: false
#| echo: true
#| warning: false
#| message: false
#| results: hide
install.packages("palmerpenguins")
library(palmerpenguins)
library(ggplot2)
```
:::
::: {style="font-size: 1.10em; color: #1e83c8;"}
**DATA:**
:::
::: {.column-margin}
![Artwork by Allison Horst](www/lter_penguins.png){fig-align="right" width="100%" height="100%"}
:::
Remove missing values from `sex` and `flipper_length_mm` and group on `sex` and `island` to the calculate the median flipper length (`med_flip_length_mm`).
::: {style="font-size: 0.85em;"}
```{r}
#| label: data_code_clev_dots
#| code-fold: show
#| eval: true
#| echo: true
peng_clev_dots <- palmerpenguins::penguins |>
dplyr::filter(!is.na(sex) & !is.na(flipper_length_mm)) |>
dplyr::group_by(sex, island) |>
dplyr::summarise(
med_flip_length_mm = median(flipper_length_mm)
) |>
dplyr::ungroup()
glimpse(peng_clev_dots)
```
:::
::::
## Grammar
::: {style="font-size: 1.10em; color: #1e83c8;"}
**CODE:**
:::
- Create labels with `labs()`
- Initialize the graph with `ggplot()` and provide `data`
- Map the `med_flip_length_mm` to the `x` axis, and `island` to the `y` axis, but wrap `island` in `forcats::fct_rev()`.
- Add `geom_line()`, and map `island` to the `group` aesthetic. Set the `linewidth` to `0.75`
- Add `geom_point()` and map `sex` to `color` aesthetic. Set the `size` to `2.25`
::: {style="font-size: 0.85em;"}
```{r}
#| label: code_graph_clev_dots
#| code-fold: show
#| eval: false
#| echo: true
#| warning: false
#| message: false
labs_clev_dots <- labs(
title = "Flipper Length Differences",
subtitle = "Male and female penguins",
x = "Median Flipper Length",
y = "Island",
color = "Sex")
ggp2_clev_dots <- ggplot(data = peng_clev_dots,
mapping = aes(x = med_flip_length_mm,
y = fct_rev(island))) +
geom_line(aes(group = island),
linewidth = 0.75) +
geom_point(aes(color = sex),
size = 2.25)
ggp2_clev_dots +
labs_clev_dots
```
:::
::: {style="font-size: 1.10em; color: #1e83c8;"}
**GRAPH:**
:::
```{r}
#| label: create_graph_clev_dots
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| layout-nrow: 1
#| column: page-inset-right
labs_clev_dots <- labs(
title = "Flipper Length Differences",
subtitle = "Male and female penguins",
x = "Median Flipper Length",
y = "Island",
color = "Sex"
)
ggp2_clev_dots <- ggplot(data = peng_clev_dots,
mapping = aes(x = med_flip_length_mm,
y = fct_rev(island))) +
geom_line(aes(group = island),
linewidth = 0.75) +
geom_point(aes(color = sex),
size = 2.25)
ggp2_clev_dots +
labs_clev_dots
```
::::
## More info
Cleveland dot plots are also helpful when comparing multiple differences on a common scale.
### Common scale
::: {style="font-size: 1.10em; color: #1e83c8;"}
**SCALE:**
:::
- Remove missing values from `sex`, `bill_length_mm` and `bill_depth_mm`, and group on `sex` and `island` to the calculate the median bill length and median bill depth. These variables need to have 'showtime-ready' names because they'll be used in our facets.
- After un-grouping the data, pivot the new columns into a long (tidy) format with `median_measure` containing the name of the variable, and `median_value` containing the numbers.
- Finally, convert `median_measure` into a factor.
::: {style="font-size: 0.85em;"}
```{r}
#| label: data_code_clev_dots2
#| eval: true
#| echo: true
peng_clev_dots2 <- palmerpenguins::penguins |>
dplyr::filter(!is.na(sex) &
!is.na(bill_length_mm) &
!is.na(bill_depth_mm)) |>
dplyr::group_by(sex, island) |>
dplyr::summarise(
`Median Bill Length` = median(bill_length_mm),
`Median Bill Depth` = median(bill_depth_mm)) |>
dplyr::ungroup() |>
tidyr::pivot_longer(cols = starts_with("Med"),
names_to = "median_measure",
values_to = "median_value") |>
dplyr::mutate(median_measure = factor(median_measure))
glimpse(peng_clev_dots2)
```
:::
### Scales
::: {style="font-size: 1.10em; color: #1e83c8;"}
**`scales`:**
:::
- Re-create labels
- Initialize the graph with `ggplot()` and provide `data`
- Map the `median_value` to the `x` axis, and `island` to the `y` axis, but wrap `island` in `forcats::fct_rev()`.
- Add `geom_line()`, and map `island` to the `group` aesthetic. Set the `linewidth` to `0.75`
- Add `geom_point()` and map `sex` to `color` aesthetic. Set the `size` to `2.25`
- Add `facet_wrap()` and facet by `median_measure`, setting `shrink` to `TRUE` and `scales` to `"free_x"`
- Move the legend with `theme(legend.position = "top")`
::: {style="font-size: 0.85em;"}
```{r}
#| label: graph_run_clev_dots_nrow_2
#| eval: true
#| echo: true
#| out-height: '100%'
#| out-width: '100%'
#| layout-nrow: 1
#| column: page-inset-right
labs_clev_dots2 <- labs(
title = "Penguin Measurements Differences",
subtitle = "Male and female penguins",
x = "Median Bill Length/Depth (mm)",
y = "Island",
color = "Sex")
ggp2_clev_dots2 <- ggplot(data = peng_clev_dots2,
mapping = aes(x = median_value,
y = fct_rev(island))) +
geom_line(aes(group = island),
linewidth = 0.55) +
geom_point(aes(color = sex),
size = 2) +
facet_wrap(. ~ median_measure,
shrink = TRUE, nrow = 2) +
theme(legend.position = "top")
ggp2_clev_dots2 +
labs_clev_dots2
```
:::
::: {style="font-size: 1.00em; color: #E74A2F;"}
**CAUTION when using `scales = "free_x"`:**
The graph below shows that the median bill length and depth is larger for male penguins on all three islands, but the magnitude of the differences should be interpreted with caution because the length of the lines can't be directly compared!
:::
::: {style="font-size: 0.85em;"}
```{r}
#| label: graph_run_clev_dots2_free_x
#| eval: true
#| echo: true
#| out-height: '100%'
#| out-width: '100%'
#| layout-nrow: 1
#| column: page-inset-right
labs_clev_dots2 <- labs(
title = "Penguin Measurements Differences",
subtitle = "Male and female penguins",
x = "Median Bill Length/Depth (mm)",
y = "Island",
color = "Sex")
ggp2_clev_dots2_free_x <- ggplot(data = peng_clev_dots2,
mapping = aes(x = median_value,
y = fct_rev(island))) +
geom_line(aes(group = island),
linewidth = 0.55) +
geom_point(aes(color = sex),
size = 2) +
facet_wrap(. ~ median_measure,
shrink = TRUE, nrow = 2,
scales = "free_x") +
theme(legend.position = "top")
ggp2_clev_dots2_free_x +
labs_clev_dots2
```
:::