forked from ProExpertProg/adaptive-hermite-refinement
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriven_hermite_landau.py
68 lines (59 loc) · 2.16 KB
/
driven_hermite_landau.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 5 00:01:52 2023
@author: nbarbour13
"""
import numpy as np
import matplotlib.pyplot as plt
# rk4 derivative function
def frk3(g,ik,ids,mcut,chit):
M = g.shape[0]
gtmp = np.zeros(M, dtype=complex)
gtmp[0] = -ik*g[1]/np.sqrt(2)
gtmp[1] = -ik*(g[2] + np.sqrt(2)*g[0])
gtmp[2] = -ik*(np.sqrt(3/2)*g[3] + g[1]) + chit
gtmp[3:M-1] = -ik*(np.sqrt(ids[4:M]/2)*g[4:M] + np.sqrt(ids[3:M-1]/2)*g[2:M-2]) - g[3:M-1]*(ids[3:M-1]/mcut)**6
gtmp[M-1] = -ik*(np.sqrt((M-1)/2)*g[M-2]) - g[M-1]*((M-1)/mcut)**6
return gtmp
# standard rk4 timestepping function
def RK43(g,ik,ids,M,chit,dt):
k1 = frk3(g ,ik,ids,M,chit)
k2 = frk3(g + dt*k1/2,ik,ids,M,chit)
k3 = frk3(g + dt*k2/2,ik,ids,M,chit)
k4 = frk3(g + dt*k3 ,ik,ids,M,chit)
return g + dt*(k1 + 2*k2 + 2*k3 + k4)/6
# Generate a dataset. returns G and chi(t) for all t
def run_sim(simparams,seedint,chis=None):
G = np.zeros((simparams['M'],simparams['nt']+1),dtype=complex)
np.random.seed(seedint)
if chis is None:
chis = np.random.rand(simparams['nt'])
for j in np.arange(simparams['nt']):
G[:,j+1] = RK43(G[:,j], simparams['ik'], simparams['m'], simparams['simcut'], chis[j], simparams['dt'])
return G, chis
def absq(g):
return np.abs(g)**2
#%%
simparams = {
"M": 100, # Total number of moments for the high resolution simulation
"simcut": 64, # hyperviscosity -> order 1 at simmcut, (m/simcut)**6
"L": 7*np.pi, # box size in spatial z
"nt": 200000,
"t": 0, # initial time
"dt": 0.01
}
simparams["m"] = np.arange(simparams["M"]) # labels Hermite index
simparams["ik"] = complex(0,1)*2*np.pi/simparams["L"] # precalculate Fourier derivative
seedint = 737
G, chis = run_sim(simparams, seedint)
# Plot the dataset
g2 = absq(G)
g2 = np.transpose(g2)
#g2 = np.flip(g2,axis=0)
t = 10000
plt.imshow(g2[:t,:],cmap='jet',aspect=1,extent=[0,simparams['M'],t*simparams['dt'],0])
plt.colorbar()
plt.xlabel('m')
plt.ylabel('t')
plt.title('$|g|^2$, L=%d$\pi$, dt=%.02f' % (int(simparams['L']/np.pi), simparams['dt']))
plt.show()