-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathUnique Paths.txt
45 lines (36 loc) · 1.19 KB
/
Unique Paths.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
problem:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Note: m and n will be at most 100.
--------------------------------------------------------
solution:
//解法一:回溯法(小集合通过,大集合超时)
int backtrack(int r, int c, int m, int n)
{
if(r == m - 1 && c == n - 1)
return 1;
if(r > m - 1 || c > n - 1)
return 0;
return backtrack(r + 1, c, m, n) + backtrack(r, c + 1, m, n);
}
int uniquePaths(int m, int n)
{
return backtrack(0, 0, m, n);
}
//解法二、DP(from bottom to up)
//动态规划状态转移方程:dp[m][n] = dp[m][n-1] + dp[m-1][n],其中dp[m][n]表示到达网格[m][n]时有多少条唯一的路径
int uniquePaths(int m, int n)
{
if(m == 0 || n == 0)
return 0;
int dp[m][n];
for(int r = 0; r < m; ++r)
dp[r][0] = 1;
for(int c = 0; c < n; ++c)
dp[0][c] = 1;
for (int r = 1; r < m; r++)
for (int c = 1; c < n; c++)
dp[r][c] = dp[r-1][c] + dp[r][c-1];
return dp[m - 1][n - 1];
}