-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path05D_pool_Griffing_Method3.R
64 lines (53 loc) · 2.2 KB
/
05D_pool_Griffing_Method3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# ------------------------------------------------------------------------------
# Griffing's analysis - method III (w/o parents) to estimate Baker's ratio
# S. Turner
# 30 October 2017
# ------------------------------------------------------------------------------
# calculates and pools Griffing's ANOVA, general combining ability (GCA),
# specific combining ability (SCA), and reciprocal effects for multiply
# imputed data
library(mice)
setwd("~/GitHub/carrot-diallel/data")
poolingDf <- read.csv("70_iter_full_data.csv", header = TRUE)
# set factor levels
poolingDf$.imp <- as.factor(poolingDf$.imp)
poolingDf$.id <- as.factor(poolingDf$.id)
poolingDf$geno <- as.factor(poolingDf$geno)
poolingDf$rep <- as.factor(poolingDf$rep)
poolingDf$male <- as.factor(poolingDf$male)
poolingDf$female <- as.factor(poolingDf$female)
poolingDf$ratio <- poolingDf$dlw/poolingDf$drw
# ------------------------------------------------------------------------------
# Griffing's ANOVA (Method III, Model I)
# ------------------------------------------------------------------------------
# remove original data w/NAs first (.imp = 0)
poolingDf2 <- poolingDf[!poolingDf$.imp==0,]
poolingDf2 <- droplevels(poolingDf2)
p <- nlevels(poolingDf2$male)
r <- nlevels(poolingDf2$rep)
y <- nlevels(poolingDf2$year)
traits <- colnames(poolingDf2[,9:17])
Baker.ratio <- list()
for(trait in traits){
for(imp in levels(poolingDf2$.imp)){
df <- poolingDf2[which(poolingDf2$.imp==imp),]
form1 <- as.formula(paste(trait, " ~ male:female", sep=""))
data1 <- data.frame(aggregate(form1, data = df, mean))
form2 <- as.formula(paste(trait, " ~ female", sep=""))
mydf <- aggregate(form2, data1, "c")
myMatrix <- as.matrix(mydf[, -1])
diag(myMatrix) <- 0
Xi. <- rowSums(myMatrix)
X.i <- colSums(myMatrix)
X.. <- sum(myMatrix)
acon <- sum((Xi.+X.i)^2)/(2*(p-2))
SSgca <- (acon - (2/(p*(p-2))) * (X..^2))
SSsca <- (sum(((myMatrix + t(myMatrix))^2)/2)/2) - acon +
(X..)^2/((p -1) * (p - 2))
MSgca <- SSgca/(p-1)
MSsca <- SSsca/(p*(p-3)/2)
GCAtoSCA <- (2*MSgca)/(2*MSgca + MSsca)
Baker.ratio[[trait]][[imp]] <- GCAtoSCA
}
}
lapply(Baker.ratio, FUN=function(x) round(mean(x),2))