forked from egovernments/mdms-mgramseva
-
Notifications
You must be signed in to change notification settings - Fork 16
/
getRatesCSV.py
96 lines (77 loc) · 3.36 KB
/
getRatesCSV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import json
import openpyxl
import os
from pandas import json_normalize
import csv
dir_list = next(os.walk('data/pb'))[1]
list_folders_tenants = []
for folder in dir_list:
folder_contents = os.scandir("data/pb/" + folder)
count = 0
for f in folder_contents:
if f.is_dir() and (f.name == 'egov-location' or f.name == 'ws-services-calculation'):
count += 1
folder_contents.close()
if count != 0:
list_folders_tenants.append(folder)
folders = []
folders.extend(list_folders_tenants)
print(len(folders))
billing_list = []
tenant_json_file_path = "data/pb/tenant/tenants.json"
tenant_json_file = open(tenant_json_file_path)
tenant_json_file_data = json.load(tenant_json_file)
tenant_map = {}
for tenant in tenant_json_file_data['tenants']:
tenant_map[tenant['code']] = tenant
for folder in folders:
if folder=='testing':
continue
# print('adding pb.' + folder + '....', end='\n')
json_file = "data/pb/" + folder + "/ws-services-calculation/WCBillingSlab.json"
file = open(json_file)
data = json.load(file)
df = json_normalize(data, record_path='WCBillingSlab')
df_residential = df[
df.buildingType == "RESIDENTIAL"]
df_resd_flat = df_residential[df_residential.calculationAttribute == 'Flat']
df_resd_flat_connectionType = df_resd_flat[df_resd_flat.connectionType == 'Non_Metered']
df_commercial = df[
df.buildingType == "COMMERCIAL"]
df_comm_flat = df_commercial[df_commercial.calculationAttribute == 'Flat']
df_comm_flat_connectionType = df_comm_flat[df_comm_flat.connectionType == 'Non_Metered']
df_mixed = df[
df.buildingType == "MIXED"]
df_mixed_flat = df_mixed[df_mixed.calculationAttribute == 'Flat']
df_mixed_flat_connectionType = df_mixed_flat[df_mixed_flat.connectionType == 'Non_Metered']
df_public_sector = df[
df.buildingType == "PUBLICSECTOR"]
df_public_sector_flat = df_public_sector[df_public_sector.calculationAttribute == 'Flat']
df_public_sector_flat_connectionType = df_public_sector_flat[df_public_sector_flat.connectionType == 'Non_Metered']
req_data = {
'tenantId': data['tenantId'],
'villageCode': tenant_map[data['tenantId']]["city"]["code"],
'tenantName': tenant_map[data['tenantId']]['name'],
'RESIDENTIAL_FLAT_Non_Metered_Minimum_Charge': int(df_resd_flat_connectionType["minimumCharge"].values[0]),
'COMMERCIAL_FLAT_Non_Metered_Minimum_Charge': int(df_comm_flat_connectionType["minimumCharge"].values[0]),
'MIXED_FLAT_Non_Metered_Minimum_Charge': int(df_comm_flat_connectionType["minimumCharge"].values[0]),
'PUBLICSECTOR_FLAT_Non_Metered_Minimum_Charge': int(df_comm_flat_connectionType["minimumCharge"].values[0]),
}
billing_list.append(req_data)
# print("added", end='\n')
file.close()
# Serializing json
json_object = json.dumps(billing_list, indent=4)
# Writing to sample.json
with open("water_billing_json.json", "w") as outfile:
outfile.write(json_object)
data_file = open('water_billing_csv_pb.csv', 'w', newline='')
csv_writer = csv.writer(data_file)
count = 0
for data in billing_list:
if count == 0:
header = data.keys()
csv_writer.writerow(header)
count += 1
csv_writer.writerow(data.values())
data_file.close()