forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simultaneous_linear_equation_solver.py
142 lines (133 loc) · 5.16 KB
/
simultaneous_linear_equation_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
https://en.wikipedia.org/wiki/Augmented_matrix
This algorithm solves simultaneous linear equations of the form
λa + λb + λc + λd + ... = γ as [λ, λ, λ, λ, ..., γ]
Where λ & γ are individual coefficients, the no. of equations = no. of coefficients - 1
Note in order to work there must exist 1 equation where all instances of λ and γ != 0
"""
def simplify(current_set: list[list]) -> list[list]:
"""
>>> simplify([[1, 2, 3], [4, 5, 6]])
[[1.0, 2.0, 3.0], [0.0, 0.75, 1.5]]
>>> simplify([[5, 2, 5], [5, 1, 10]])
[[1.0, 0.4, 1.0], [0.0, 0.2, -1.0]]
"""
# Divide each row by magnitude of first term --> creates 'unit' matrix
duplicate_set = current_set.copy()
for row_index, row in enumerate(duplicate_set):
magnitude = row[0]
for column_index, column in enumerate(row):
if magnitude == 0:
current_set[row_index][column_index] = column
continue
current_set[row_index][column_index] = column / magnitude
# Subtract to cancel term
first_row = current_set[0]
final_set = [first_row]
current_set = current_set[1::]
for row in current_set:
temp_row = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(row)
continue
for column_index in range(len(row)):
temp_row.append(first_row[column_index] - row[column_index])
final_set.append(temp_row)
# Create next recursion iteration set
if len(final_set[0]) != 3:
current_first_row = final_set[0]
current_first_column = []
next_iteration = []
for row in final_set[1::]:
current_first_column.append(row[0])
next_iteration.append(row[1::])
resultant = simplify(next_iteration)
for i in range(len(resultant)):
resultant[i].insert(0, current_first_column[i])
resultant.insert(0, current_first_row)
final_set = resultant
return final_set
def solve_simultaneous(equations: list[list]) -> list:
"""
>>> solve_simultaneous([[1, 2, 3],[4, 5, 6]])
[-1.0, 2.0]
>>> solve_simultaneous([[0, -3, 1, 7],[3, 2, -1, 11],[5, 1, -2, 12]])
[6.4, 1.2, 10.6]
>>> solve_simultaneous([])
Traceback (most recent call last):
...
IndexError: solve_simultaneous() requires n lists of length n+1
>>> solve_simultaneous([[1, 2, 3],[1, 2]])
Traceback (most recent call last):
...
IndexError: solve_simultaneous() requires n lists of length n+1
>>> solve_simultaneous([[1, 2, 3],["a", 7, 8]])
Traceback (most recent call last):
...
ValueError: solve_simultaneous() requires lists of integers
>>> solve_simultaneous([[0, 2, 3],[4, 0, 6]])
Traceback (most recent call last):
...
ValueError: solve_simultaneous() requires at least 1 full equation
"""
if len(equations) == 0:
raise IndexError("solve_simultaneous() requires n lists of length n+1")
_length = len(equations) + 1
if any(len(item) != _length for item in equations):
raise IndexError("solve_simultaneous() requires n lists of length n+1")
for row in equations:
if any(not isinstance(column, (int, float)) for column in row):
raise ValueError("solve_simultaneous() requires lists of integers")
if len(equations) == 1:
return [equations[0][-1] / equations[0][0]]
data_set = equations.copy()
if any(0 in row for row in data_set):
temp_data = data_set.copy()
full_row = []
for row_index, row in enumerate(temp_data):
if 0 not in row:
full_row = data_set.pop(row_index)
break
if not full_row:
raise ValueError("solve_simultaneous() requires at least 1 full equation")
data_set.insert(0, full_row)
useable_form = data_set.copy()
simplified = simplify(useable_form)
simplified = simplified[::-1]
solutions: list = []
for row in simplified:
current_solution = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0)
continue
solutions.append(current_solution / row[-2])
continue
temp_row = row.copy()[: len(row) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0)
if len(temp_row) == 0:
solutions.append(0)
continue
temp_row = temp_row[1::]
temp_row = temp_row[::-1]
for column_index, column in enumerate(temp_row):
current_solution -= column * solutions[column_index]
solutions.append(current_solution)
final = []
for item in solutions:
final.append(float(round(item, 5)))
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
eq = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))