forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist.py
238 lines (198 loc) · 8.04 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app as absl_app
from absl import flags
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.mnist import dataset
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.misc import distribution_utils
from official.utils.misc import model_helpers
LEARNING_RATE = 1e-4
def create_model(data_format):
"""Model to recognize digits in the MNIST dataset.
Network structure is equivalent to:
https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py
and
https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py
But uses the tf.keras API.
Args:
data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is
typically faster on GPUs while 'channels_last' is typically faster on
CPUs. See
https://www.tensorflow.org/performance/performance_guide#data_formats
Returns:
A tf.keras.Model.
"""
if data_format == 'channels_first':
input_shape = [1, 28, 28]
else:
assert data_format == 'channels_last'
input_shape = [28, 28, 1]
l = tf.keras.layers
max_pool = l.MaxPooling2D(
(2, 2), (2, 2), padding='same', data_format=data_format)
# The model consists of a sequential chain of layers, so tf.keras.Sequential
# (a subclass of tf.keras.Model) makes for a compact description.
return tf.keras.Sequential(
[
l.Reshape(
target_shape=input_shape,
input_shape=(28 * 28,)),
l.Conv2D(
32,
5,
padding='same',
data_format=data_format,
activation=tf.nn.relu),
max_pool,
l.Conv2D(
64,
5,
padding='same',
data_format=data_format,
activation=tf.nn.relu),
max_pool,
l.Flatten(),
l.Dense(1024, activation=tf.nn.relu),
l.Dropout(0.4),
l.Dense(10)
])
def define_mnist_flags():
flags_core.define_base()
flags_core.define_performance(num_parallel_calls=False)
flags_core.define_image()
flags.adopt_module_key_flags(flags_core)
flags_core.set_defaults(data_dir='/tmp/mnist_data',
model_dir='/tmp/mnist_model',
batch_size=100,
train_epochs=40)
def model_fn(features, labels, mode, params):
"""The model_fn argument for creating an Estimator."""
model = create_model(params['data_format'])
image = features
if isinstance(image, dict):
image = features['image']
if mode == tf.estimator.ModeKeys.PREDICT:
logits = model(image, training=False)
predictions = {
'classes': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits),
}
return tf.estimator.EstimatorSpec(
mode=tf.estimator.ModeKeys.PREDICT,
predictions=predictions,
export_outputs={
'classify': tf.estimator.export.PredictOutput(predictions)
})
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
logits = model(image, training=True)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
accuracy = tf.metrics.accuracy(
labels=labels, predictions=tf.argmax(logits, axis=1))
# Name tensors to be logged with LoggingTensorHook.
tf.identity(LEARNING_RATE, 'learning_rate')
tf.identity(loss, 'cross_entropy')
tf.identity(accuracy[1], name='train_accuracy')
# Save accuracy scalar to Tensorboard output.
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec(
mode=tf.estimator.ModeKeys.TRAIN,
loss=loss,
train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
if mode == tf.estimator.ModeKeys.EVAL:
logits = model(image, training=False)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
return tf.estimator.EstimatorSpec(
mode=tf.estimator.ModeKeys.EVAL,
loss=loss,
eval_metric_ops={
'accuracy':
tf.metrics.accuracy(
labels=labels, predictions=tf.argmax(logits, axis=1)),
})
def run_mnist(flags_obj):
"""Run MNIST training and eval loop.
Args:
flags_obj: An object containing parsed flag values.
"""
model_helpers.apply_clean(flags_obj)
model_function = model_fn
session_config = tf.ConfigProto(
inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
allow_soft_placement=True)
distribution_strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=flags_obj.distribution_strategy,
num_gpus=flags_core.get_num_gpus(flags_obj),
all_reduce_alg=flags_obj.all_reduce_alg)
run_config = tf.estimator.RunConfig(
train_distribute=distribution_strategy, session_config=session_config)
data_format = flags_obj.data_format
if data_format is None:
data_format = ('channels_first'
if tf.test.is_built_with_cuda() else 'channels_last')
mnist_classifier = tf.estimator.Estimator(
model_fn=model_function,
model_dir=flags_obj.model_dir,
config=run_config,
params={
'data_format': data_format,
})
# Set up training and evaluation input functions.
def train_input_fn():
"""Prepare data for training."""
# When choosing shuffle buffer sizes, larger sizes result in better
# randomness, while smaller sizes use less memory. MNIST is a small
# enough dataset that we can easily shuffle the full epoch.
ds = dataset.train(flags_obj.data_dir)
ds = ds.cache().shuffle(buffer_size=50000).batch(flags_obj.batch_size)
# Iterate through the dataset a set number (`epochs_between_evals`) of times
# during each training session.
ds = ds.repeat(flags_obj.epochs_between_evals)
return ds
def eval_input_fn():
return dataset.test(flags_obj.data_dir).batch(
flags_obj.batch_size).make_one_shot_iterator().get_next()
# Set up hook that outputs training logs every 100 steps.
train_hooks = hooks_helper.get_train_hooks(
flags_obj.hooks, model_dir=flags_obj.model_dir,
batch_size=flags_obj.batch_size)
# Train and evaluate model.
for _ in range(flags_obj.train_epochs // flags_obj.epochs_between_evals):
mnist_classifier.train(input_fn=train_input_fn, hooks=train_hooks)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print('\nEvaluation results:\n\t%s\n' % eval_results)
if model_helpers.past_stop_threshold(flags_obj.stop_threshold,
eval_results['accuracy']):
break
# Export the model
if flags_obj.export_dir is not None:
image = tf.placeholder(tf.float32, [None, 28, 28])
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
'image': image,
})
mnist_classifier.export_savedmodel(flags_obj.export_dir, input_fn,
strip_default_attrs=True)
def main(_):
run_mnist(flags.FLAGS)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
define_mnist_flags()
absl_app.run(main)