-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_sirs.py
109 lines (88 loc) · 4.45 KB
/
train_sirs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
from os.path import join
import data.sirs_dataset as datasets
import util.util as util
from data.image_folder import read_fns
from engine import Engine
from options.net_options.train_options import TrainOptions
from tools import mutils
opt = TrainOptions().parse()
print(opt)
opt.display_freq = 10
if opt.debug:
opt.display_id = 1
opt.display_freq = 1
opt.print_freq = 20
opt.nEpochs = 40
opt.max_dataset_size = 9999
opt.no_log = False
opt.nThreads = 0
opt.decay_iter = 0
opt.serial_batches = True
opt.no_flip = True
# modify the following code to
datadir = os.path.join(opt.base_dir)
datadir_syn = join(datadir, 'train/VOCdevkit/VOC2012/PNGImages')
datadir_real = join(datadir, 'train/real')
train_dataset = datasets.DSRDataset(
datadir_syn, read_fns('data/VOC2012_224_train_png.txt'), size=opt.max_dataset_size, enable_transforms=True)
train_dataset_real = datasets.DSRTestDataset(datadir_real, enable_transforms=True, if_align=opt.if_align)
train_dataset_fusion = datasets.FusionDataset([train_dataset,
train_dataset_real], [0.7, 0.3])
train_dataloader_fusion = datasets.DataLoader(
train_dataset_fusion, batch_size=opt.batchSize, shuffle=not opt.serial_batches,
pin_memory=True, prefetch_factor=32, num_workers=32)
eval_dataset_real = datasets.DSRTestDataset(join(datadir, f'test/real20_{opt.real20_size}'),
fns=read_fns('data/real_test.txt'), if_align=opt.if_align)
eval_dataset_solidobject = datasets.DSRTestDataset(join(datadir, 'test/SIR2/SolidObjectDataset'),
if_align=opt.if_align)
eval_dataset_postcard = datasets.DSRTestDataset(join(datadir, 'test/SIR2/PostcardDataset'), if_align=opt.if_align)
eval_dataset_wild = datasets.DSRTestDataset(join(datadir, 'test/SIR2/WildSceneDataset'), if_align=opt.if_align)
eval_dataloader_real = datasets.DataLoader(
eval_dataset_real, batch_size=1, shuffle=False,
pin_memory=True, prefetch_factor=32, num_workers=32)
eval_dataloader_solidobject = datasets.DataLoader(
eval_dataset_solidobject, batch_size=1, shuffle=False,
pin_memory=True, prefetch_factor=32, num_workers=32)
eval_dataloader_postcard = datasets.DataLoader(
eval_dataset_postcard, batch_size=1, shuffle=False,
pin_memory=True, prefetch_factor=32, num_workers=32)
eval_dataloader_wild = datasets.DataLoader(
eval_dataset_wild, batch_size=1, shuffle=False,
pin_memory=True, prefetch_factor=32, num_workers=32)
"""Main Loop"""
engine = Engine(opt)
result_dir = os.path.join(f'./checkpoints/{opt.name}/results',
mutils.get_formatted_time())
def set_learning_rate(lr):
for optimizer in engine.model.optimizers:
print('[i] set learning rate to {}'.format(lr))
util.set_opt_param(optimizer, 'lr', lr)
if opt.resume or opt.debug_eval:
save_dir = os.path.join(result_dir, '%03d' % engine.epoch)
os.makedirs(save_dir, exist_ok=True)
engine.save_model()
engine.eval(eval_dataloader_real, dataset_name='testdata_real20',
savedir=save_dir, suffix='real20', max_save_size=10)
engine.eval(eval_dataloader_solidobject, dataset_name='testdata_solidobject',
savedir=save_dir, suffix='solidobject', max_save_size=10)
engine.eval(eval_dataloader_postcard, dataset_name='testdata_postcard',
savedir=save_dir, suffix='postcard', max_save_size=10)
engine.eval(eval_dataloader_wild, dataset_name='testdata_wild',
savedir=save_dir, suffix='wild', max_save_size=10)
# define training strategy
set_learning_rate(opt.lr)
while engine.epoch < 50:
print('random_seed: ', opt.seed)
engine.train(train_dataloader_fusion)
if engine.epoch % 1 == 0:
save_dir = os.path.join(result_dir, '%03d' % engine.epoch)
os.makedirs(save_dir, exist_ok=True)
engine.eval(eval_dataloader_real, dataset_name='testdata_real20',
savedir=save_dir, suffix='real20', max_save_size=10)
engine.eval(eval_dataloader_solidobject, dataset_name='testdata_solidobject',
savedir=save_dir, suffix='solidobject', max_save_size=10)
engine.eval(eval_dataloader_postcard, dataset_name='testdata_postcard',
savedir=save_dir, suffix='postcard', max_save_size=10)
engine.eval(eval_dataloader_wild, dataset_name='testdata_wild',
savedir=save_dir, suffix='wild', max_save_size=10)