-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathengine.py
151 lines (120 loc) · 4.93 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import util.util as util
from models import make_model
import time
import os
import sys
from os.path import join
from util.visualizer import Visualizer
class Engine(object):
def __init__(self, opt):
self.opt = opt
self.writer = None
self.visualizer = None
self.model = None
self.best_val_loss = 1e6
self.__setup()
def __setup(self):
self.basedir = join('checkpoints', self.opt.name)
os.makedirs(self.basedir, exist_ok=True)
opt = self.opt
"""Model"""
self.model = make_model(self.opt.model)() # models.__dict__[self.opt.model]()
self.model.initialize(opt)
if not opt.no_log:
self.writer = util.get_summary_writer(os.path.join(self.basedir, 'logs'))
self.visualizer = Visualizer(opt)
def train(self, train_loader, **kwargs):
print('\nEpoch: %d' % self.epoch)
avg_meters = util.AverageMeters()
opt = self.opt
model = self.model
epoch = self.epoch
epoch_start_time = time.time()
for i, data in enumerate(train_loader):
iter_start_time = time.time()
iterations = self.iterations
model.set_input(data, mode='train')
model.optimize_parameters(**kwargs)
errors = model.get_current_errors()
avg_meters.update(errors)
util.progress_bar(i, len(train_loader), str(avg_meters))
if not opt.no_log:
util.write_loss(self.writer, 'train', avg_meters, iterations)
if iterations % opt.display_freq == 0 and opt.display_id != 0:
save_result = iterations % opt.update_html_freq == 0
self.visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if iterations % opt.print_freq == 0 and opt.display_id != 0:
t = (time.time() - iter_start_time)
self.iterations += 1
self.epoch += 1
if not self.opt.no_log:
if self.epoch % opt.save_epoch_freq == 0:
print('saving the model at epoch %d, iters %d' %
(self.epoch, self.iterations))
model.save()
print('saving the latest model at the end of epoch %d, iters %d' %
(self.epoch, self.iterations))
model.save(label='latest')
print('Time Taken: %d sec' %
(time.time() - epoch_start_time))
# model.update_learning_rate()
try:
train_loader.reset()
except:
pass
def eval(self, val_loader, dataset_name, savedir='./tmp', loss_key=None, max_save_size=None, **kwargs):
# print(dataset_name)
if savedir is not None:
os.makedirs(savedir, exist_ok=True)
self.f = open(os.path.join(savedir, 'metrics.txt'), 'w+')
self.f.write(dataset_name + '\n')
avg_meters = util.AverageMeters()
model = self.model
opt = self.opt
with torch.no_grad():
for i, data in enumerate(val_loader):
if opt.selected and data['fn'][0].split('.')[0] not in opt.selected:
continue
if max_save_size is not None and i > max_save_size:
index = model.eval(data, savedir=None, **kwargs)
else:
index = model.eval(data, savedir=savedir, **kwargs)
# print(data['fn'][0], index)
if savedir is not None:
self.f.write(f"{data['fn'][0]} {index['PSNR']} {index['SSIM']}\n")
avg_meters.update(index)
util.progress_bar(i, len(val_loader), str(avg_meters))
if not opt.no_log:
util.write_loss(self.writer, join('eval', dataset_name), avg_meters, self.epoch)
if loss_key is not None:
val_loss = avg_meters[loss_key]
if val_loss < self.best_val_loss:
self.best_val_loss = val_loss
print('saving the best model at the end of epoch %d, iters %d' %
(self.epoch, self.iterations))
model.save(label='best_{}_{}'.format(loss_key, dataset_name))
return avg_meters
def test(self, test_loader, savedir=None, **kwargs):
model = self.model
opt = self.opt
with torch.no_grad():
for i, data in enumerate(test_loader):
model.test(data, savedir=savedir, **kwargs)
util.progress_bar(i, len(test_loader))
def save_model(self):
self.model.save()
def save_eval(self, label):
self.model.save_eval(label)
@property
def iterations(self):
return self.model.iterations
@iterations.setter
def iterations(self, i):
self.model.iterations = i
@property
def epoch(self):
return self.model.epoch
@epoch.setter
def epoch(self, e):
self.model.epoch = e